ADMICRO
Thu gọn số phức \(z = \dfrac{{3 + 2i}}{{1 - i}} + \dfrac{{1 - i}}{{3 + 2i}}\), ta được:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(\eqalign{z& = \dfrac{{3 + 2i}}{{1 - i}} + \dfrac{{1 - i}}{{3 + 2i}}\cr& = \dfrac{{{{\left( {3 + 2i} \right)}^2} + {{\left( {1 - i} \right)}^2}}}{{\left( {1 - i} \right)\left( {3 + 2i} \right)}}\cr&= \dfrac{{9 + 4{i^2} + 12i + 1 + {i^2} - 2i}}{{3 - 2{i^2} - i}}\cr& = \dfrac{{5 + 10i}}{{5 - i}}\cr& = \dfrac{{5(1 + 2i)(5 + i)}}{{25 - {i^2}}}\cr& = \dfrac{{5(5 + 2{i^2} + 11i)}}{{26}}\cr&= \dfrac{{5(3 + 11i)}}{{26}} = \dfrac{{15}}{{26}} + \dfrac{{55}}{{26}}i\cr}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK