Tại điểm \(O\) đặt hai nguồn âm điểm giống hệt nhau phát ra âm đẳng hướng có công suất không đổi. Điểm \(A\) cách \(O\) một đoạn \(d\) (\(m\)) có mức cường độ âm là \(L_A = 40 dB\). Trên tia vuông góc với \(OA\) tại \(A\), lấy điểm \(B\) cách \(A\) một khoảng \(6 m\). Điểm \(M\) thuộc đoạn \(AB\) sao cho \(AM = 4,5 m\) và góc \(\widehat {MOB}\)có giá trị lớn nhất. Để mức cường độ âm tại \(M\) là \(50 dB\) thì cần đặt thêm tại \(O\) bao nhiêu nguồn âm nữa?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐáp án : D
\(\tan \widehat {MOB} = \dfrac{{\tan \widehat {AOB} - \tan \widehat {AOM}}}{{1 + \tan \widehat {AOB}\tan \widehat {AOM}}} = \dfrac{{\dfrac{{AB}}{{AO}} - \dfrac{{AM}}{{AO}}}}{{1 + \dfrac{{AB}}{{AO}}.\dfrac{{AM}}{{AO}}}}\)
\( \Rightarrow \tan \varphi = \dfrac{{\dfrac{{AB}}{d} - \dfrac{{AM}}{d}}}{{1 + \dfrac{{AB}}{d}.\dfrac{{AM}}{d}}} = \dfrac{{AB - AM}}{{d + \dfrac{{AB.AM}}{d}}}\)
\( \Rightarrow \tan \varphi \) đạt cực đại khi \(\left( {d + \dfrac{{AB.AM}}{d}} \right)\) đạt min \(d = \dfrac{{AB.AM}}{d} \Leftrightarrow d = \sqrt {AB.AM} = 3\sqrt 3 (m)\)
\( \Rightarrow OM = \sqrt {A{O^2} + A{M^2}} = \dfrac{{3\sqrt {21} }}{2}(m)\)
\( \Rightarrow {L_A} - {L_M} = 20\lg \dfrac{{{r_M}}}{{{r_A}}} = 2,43(dB) \Rightarrow {L_M} = 37,57(dB)\)
Để mức cường độ âm tại M là 50 dB thì:
\({L_2} - {L_1} = 10\lg \dfrac{{{P_2}}}{{{P_1}}} = 50 - 37,57 = 12,43 \Rightarrow {P_2} \approx 35P\)
Trong đó P là công suất của một nguồn âm.
Suy ra cần thêm 33 nguồn âm nữa
Đề thi thử Tốt nghiệp THPT môn Vật lí năm 2023-2024
Trường THPT Nguyễn Huệ