Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8m.\) Người ta treo một tấm phông hình chữ nhật có hai đỉnh \(M,N\) nằm trên Parabol và hai đỉnh \(P,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1{m^2}\) cần số tiền mua hoa là \(200.000\) đồng cho \(1{m^2}.\) Biết \(MN = 4m;MQ = 6m.\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGắn hệ trục tọa độ \(Oxy\) như hình vẽ, ta có Parabol đi qua các điểm \(A\left( {4;0} \right);N\left( {2;6} \right)\)
Gọi phương trình Parabol \(y = a{x^2} + b\), vì Parabol đi qua các điểm \(A\left( {4;0} \right)\) và \(N\left( {2;6} \right)\) nên ta có hệ phương trình \(\left\{ \begin{array}{l}16a + b = 0\\4a + b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \dfrac{1}{2}\\b = 8\end{array} \right.\) nên Parabol \(y = - \dfrac{1}{2}{x^2} + 8\)
Hoành độ giao điểm của Parabol và trục hoành là \( - \dfrac{1}{2}{x^2} + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)
Phần diện tích cổng giới hạn bởi Paraol là \({S_1} = \int\limits_{ - 4}^4 {\left| { - \dfrac{1}{2}{x^2} + 8} \right|dx = \dfrac{{128}}{3}{m^2}} \)
Diện tích hình chữ nhật \(MNPQ\) là \({S_2} = 6.4 = 24{m^2}\)
Diện tích phần trang trí hoa là \(S = {S_1} - {S_2} = \dfrac{{128}}{3} - 24 = \dfrac{{56}}{3}\left( {{m^2}} \right)\)
Số tiền cần dùng để mua hoa trang trí là \(\dfrac{{56}}{3}.200000 \approx 3\,733\,300\) đồng.
Chọn D.