ADMICRO
Giá trị của \(\int\limits_0^\pi {\sqrt {1 + \cos 2x} dx} \) là:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có
\(\begin{array}{l}I = \int\limits_0^\pi {\sqrt {1 + \cos 2x} } dx\\ = \int\limits_0^\pi {\sqrt {2{{\cos }^2}x} dx} = \int\limits_0^\pi {\sqrt 2 } \left| {\cos x} \right|dx\end{array}\)
Xét trên \(\left[ {0;\pi } \right]\) ta có: \(\cos x \ge 0 \Leftrightarrow \left| {\cos x} \right| = \cos x\).
Vậy \(I = \int\limits_0^\pi {\sqrt 2 } \cos xdx = \sqrt 2 \left. {\sin x} \right|_0^\pi = 0\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK