Cho x, y là các số thực thỏa mãn \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = 2x - y\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge \). ĐK \(x > y;x > - y \Rightarrow x > 0;x > y\).
Suy ra \({\log _4}\left( {{x^2} - {y^2}} \right) \ge 1 \Leftrightarrow {x^2} - {y^2} \ge 4 \Leftrightarrow {x^2} \ge {y^2} + 4 \Rightarrow x \ge \sqrt {{y^2} + 4} \) (vì x > 0)
Lại có \(P = 2x - y \ge 2\sqrt {{y^2} + 4} - y \ge 2\sqrt {{y^2} + 4} - \left| y \right|\)
Đặt \(t = \left| y \right| \ge 0\)
Xét \(f\left( t \right) = 2\sqrt {{t^2} + 4} - t\) có \(f'\left( t \right) = 2\frac{t}{{\sqrt {{t^2} + 4} }} - 1 = 0 \Rightarrow 2t = \sqrt {{t^2} + 4} \Rightarrow 3{t^2} = 4 \Leftrightarrow \left[ \begin{array}{l}
t = \frac{2}{{\sqrt 3 }}\left( {tm} \right)\\
t = - \frac{2}{{\sqrt 3 }}\left( {ktm} \right)
\end{array} \right.\)
BBT của \(f(t)\) trên \(\left( {0; + \infty } \right)\)
Từ BBT suy ra \(\min f\left( t \right) = 2\sqrt 3 \Leftrightarrow t = \frac{2}{{\sqrt 3 }}\)
Suy ra \(P \ge 2\sqrt 3 \) hay GTNN của P là \(2\sqrt 3 \)
\( \Leftrightarrow \left[ \begin{array}{l}
x = \frac{4}{{\sqrt 3 }};y = \frac{2}{{\sqrt 3 }}\\
x = \frac{2}{{\sqrt 3 }};y = - \frac{2}{{\sqrt 3 }}
\end{array} \right.\)
Đề thi thử THPT QG môn Toán năm 2019
Sở GD & ĐT Bạc Liêu lần 2