ADMICRO
Cho số phức \(z = a + bi,(a,b \in \mathbb{R})\) thỏa mãn \(z + 1 + 3i - \left| z \right|i = 0\) . Tính \(S = a + 3b.\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(z + 1 + 3i - \left| z \right|i = 0 \Leftrightarrow a + 1 + (b + 3)i = \sqrt {{a^2} + {b^2}} i \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b + 3 = \sqrt {{b^2} + 1} ,(1)\end{array} \right.\)
Với \(b \ge - 3\) thì (1) tương đương với: \({(b + 3)^2} = {b^2} + 1 \Leftrightarrow b = \frac{{ - 4}}{3}\)
Vậy \(a + 3b = - 5.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK