Cho lăng trụ đứng ABC.A'B'C' có \(AC = a;BC = 2a,\,\,\widehat {ACB} = 120^\circ \). Gọi M là trung điểm của BB'. Tính khoảng cách giữa hai đường thẳng AM và CC' theo a.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai
Ta có: \(CC'//AA' \Rightarrow CC'//\left( {ABB'A'} \right) \supset AM\).
\(\Rightarrow d\left( {AM;CC'} \right) = d\left( {CC';\left( {ABB'A'} \right)} \right) = d\left( {C;\left( {ABB'A'} \right)} \right)\)
Trong (ANC) kẻ \(CH \bot AB\) (\(H \in AB\)) ta có:
\(\left\{ \begin{array}{l} CH \bot AB\\ CH \bot AA' \end{array} \right. \Rightarrow CH \bot \left( {ABB'A'} \right) \Rightarrow d\left( {C;\left( {ABB'A'} \right)} \right) = CH\).
Ta có \({S_{\Delta ABC}} = \frac{1}{2}CA.CB.\sin \widehat {ACB} = \frac{1}{2}.2a.a.\sin 120^\circ = \frac{{{a^2}\sqrt 3 }}{2}\)
Áp dụng định lí cosin trong tam giác ABC ta có:
\(AB = \sqrt {A{C^2} + B{C^2} - 2AC.BC.\cos \widehat {ACB}} = \sqrt {4{a^2} + {a^2} - 2.2a.a.\left( {\frac{{ - 1}}{2}} \right)} = a\sqrt 7 \)
Mà \({S_{\Delta ABC}} = \frac{1}{2}CH.AB \Rightarrow CH = \frac{{2{S_{\Delta ABC}}}}{{AB}} = \frac{{2.\frac{{{a^2}\sqrt 3 }}{2}}}{{a\sqrt 7 }} = \frac{{a\sqrt 3 }}{{\sqrt 7 }}\).