Cho khối chóp SABCD có đáy là hình bình hành, \(AB = 3,AD = 4,\angle BAD = {120^0}\). Cạnh bên \(SA = 2\sqrt 3 \) vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC, \(\alpha \) là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left\{ {\begin{array}{*{20}{c}}
{MN//SD}\\
{NP//CD}
\end{array}} \right. = > \left( {MNP} \right)//\left( {SCD} \right)\)
\( \Rightarrow \angle \left( {\left( {SAC} \right),\left( {MNP} \right)} \right) = \angle \left( {\left( {SAC} \right),\left( {SCD} \right)} \right) = \alpha \)
Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu của H xuống SC
\( \Rightarrow \alpha = \angle AKH\)
Ta có: \({V_{SACD}} = \frac{1}{2}{V_{SABCD}} = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}SA.2{S_{ABD}} = \frac{1}{3}.SA.AB.AD.\sin \angle BAD = \frac{1}{3}.\frac{1}{2}.3.4.\sqrt 3 .2\sqrt 3 = 6\)
Có: \(A{C^2} = 13 \Rightarrow S{C^2} = S{A^2} + A{C^2} = 25\)
\(\begin{array}{l}
SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {12 + 16} = \sqrt {28} \\
\Rightarrow {S_{SCD}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {54} = 3\sqrt 6 \\
\Rightarrow AH = d\left( {A;\left( {CSD} \right)} \right) = \frac{{3{V_{SACD}}}}{{{S_{SCD}}}} = \frac{{3.6}}{{3\sqrt 6 }} = \sqrt 6 \\
AK = \frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{2\sqrt {39} }}{5}\\
\Rightarrow \sin \alpha = \frac{{AH}}{{AK}} = \sqrt 6 .\frac{5}{{2\sqrt {39} }} = \frac{{5\sqrt {26} }}{{26}} \Rightarrow \alpha \in \left( {{{60}^0};{{90}^0}} \right)
\end{array}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Quảng Xương 1 - Thanh Hóa