Cho hình thang ABCD vuông tại A và D có \(CD=2AB=2AD=6.\) Tính thể tích V của khối tròn xoay sinh ra bởi hình thang ABCD khi quay xung quanh đường thẳng BC?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiThể tích khối tròn xoay sinh ra sau khi quay hình thang \(ABCD\) xung quanh cạnh \(BC\) được tính như sau: \(V=2.\left( {{V}_{1}}-{{V}_{2}} \right)\) với \({{V}_{1}}\) là thể tích khối nón có đỉnh là \(C\) có đáy là hình tròn tâm \(B\), \({{V}_{2}}\) là khối nón đỉnh \(H\) có đáy là hình tròn tâm tâm \(I.\)
Tam giác \(BCD\) vuông cân tại \(B\) nên \(BC=BD=AB\sqrt{2}=3\sqrt{2}\)
Nên \({{V}_{1}}=\frac{1}{3}\pi B{{C}^{2}}.BD=\frac{1}{3}\pi .{{\left( 3\sqrt{2} \right)}^{2}}.3\sqrt{2}=18\sqrt{2}\pi \)
Dễ dàng chứng minh được \(BAHE\) là hình vuông nên \(AE=HB=AB\sqrt{2}=3\sqrt{2}\Rightarrow HI=\frac{3\sqrt{2}}{2}\)
Nên \({{V}_{2}}=\frac{1}{3}\pi .I{{A}^{2}}.IH=\frac{1}{3}\pi {{\left( \frac{3\sqrt{2}}{2} \right)}^{2}}.\frac{3\sqrt{2}}{2}=\frac{9\sqrt{2}}{4}\pi \)
Vậy \(V=2\left( {{V}_{1}}-{{V}_{2}} \right)=\frac{63\sqrt{2}}{2}\pi \)
Chọn C
Đề thi thử Tốt nghiệp THPT môn Toán năm 2023-2024
Trường THPT Sương Nguyệt Anh