Cho hình chóp S.ABC có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng \({{30}^{\text{o}}}\). Biết AB=5, BC=8, AC=7, khoảng cách d từ điểm A đến mặt phẳng \(\left( SBC \right)\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiKẻ \(SH\bot \left( ABC \right)\] tại H.
Ta có HA, HB, HC lần lượt là hình chiếu vuông góc của SA, SB, SC lên \(\left( ABC \right)\).
Theo giả thiết ta có \(\widehat{SAH}=\widehat{SBH}=\widehat{SCH}={{30}^{0}} \Rightarrow \Delta SAH=\Delta SBH=\Delta SCH \Rightarrow HA=HB=HC\). Do đó H là tâm đường tròn ngoại tiếp \(\Delta ABC\).
Ta có \({{V}_{S.ABC}}=\frac{1}{3}d\left( A,(SBC) \right).{{S}_{\Delta SBC}} \Rightarrow d\left( A,(SBC) \right)=\frac{3{{V}_{S.ABC}}}{{{S}_{\Delta SBC}}}, \left( * \right)\).
\(p=\frac{AB+BC+AC}{2}=10 \Rightarrow {{S}_{\Delta ABC}}=\sqrt{p\left( p-AB \right)\left( p-BC \right)\left( p-AC \right)}=10\sqrt{3}\).
\({{S}_{\Delta ABC}}=\frac{AB.BC.AC}{4R}\Rightarrow HA=R=\frac{AB.BC.AC}{4{{S}_{\Delta ABC}}}=\frac{7\sqrt{3}}{3}\).
\(SH=AH.\tan {{30}^{0}}=\frac{7}{3}\).
\({{V}_{S.ABC}}=\frac{1}{3}SH.{{S}_{\Delta ABC}}=\frac{70\sqrt{3}}{9}\).
\(p=\frac{SB+SC+BC}{2}=\frac{26}{3} \Rightarrow {{S}_{\Delta SBC}}=\sqrt{p\left( p-SB \right)\left( p-SC \right)\left( p-BC \right)}=\frac{8\sqrt{13}}{3}\).
Thế vào \(\left( * \right)\) ta được \(d\left( A,(SBC) \right)=\frac{3{{V}_{S.ABC}}}{{{S}_{\Delta SBC}}}=\frac{\frac{70\sqrt{3}}{3}}{\frac{8\sqrt{13}}{3}}=\frac{35\sqrt{39}}{52}\).