Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2\cos x - 1}}{{{{\sin }^2}x}}\) trên khoảng \(\left( {0;\pi } \right).\) Biết rằng giá trị lớn nhất của \(F(x)\) trên khoảng \(\left( {0;\pi } \right)\) là \(\sqrt 3 .\) Chọn mệnh đề đúng trong các mệnh đề sau?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có
\(\begin{array}{l}
F\left( x \right) = \int {\frac{{2\cos x - 1}}{{{{\sin }^2}x}}dx} = 2\int {\frac{{\cos x}}{{{{\sin }^2}x}}dx} - \int {\frac{1}{{{{\sin }^2}x}}dx} \\
= 2\int {\frac{{d\left( {{\mathop{\rm sinx}\nolimits} } \right)}}{{{{\sin }^2}x}}} + \cot x + C = - \frac{2}{{{\mathop{\rm sinx}\nolimits} }} + \cot x + C.
\end{array}\)
\(F'\left( x \right) = f\left( x \right) = 0 \Leftrightarrow 2\cos x - 1 = 0 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{3} + k2\pi \\
x = - \frac{\pi }{3} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\)
\(x \in (0;\pi ) \Rightarrow x = \frac{\pi }{3} \Rightarrow \mathop {Max}\limits_{(0;\pi )} F\left( x \right) = \sqrt 3 \) khi \(x = \frac{\pi }{3}.\)
\(\begin{array}{l}
\Rightarrow F\left( x \right) = - \frac{2}{{{\mathop{\rm sinx}\nolimits} }} + \cot x + 2\sqrt 3 \\
\Rightarrow \left\{ \begin{array}{l}
F\left( {\frac{\pi }{6}} \right) = - 4 + 3\sqrt 3 \\
F\left( {\frac{{2\pi }}{3}} \right) = \frac{{\sqrt 3 }}{3}\\
F\left( {\frac{\pi }{3}} \right) = \sqrt 3 \\
F\left( {\frac{{5\pi }}{6}} \right) = - 4 + \sqrt 3
\end{array} \right.
\end{array}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường Chuyên Quốc học Huế lần 1