Cho hàm số \(f(x)\) có đạo hàm trên R thỏa mãn \(f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\) với mọi \(x \in R,f\left( 0 \right) = 2018.\) Tính \(f(1)\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}} \Leftrightarrow {e^{ - 2018x}}f'\left( x \right) - 2018{e^{ - 2018x}}f\left( x \right) = 2018{x^{2017}}\)
\( \Rightarrow {\left( {{e^{ - 2018x}}f\left( x \right)} \right)^\prime } = 2018{x^{2017}} \Rightarrow {e^{ - 2018x}}f\left( x \right)\) là 1 nguyên hàm của \(2018{x^{2017}}\)
Ta có: \(\int {2018{x^{2017dx}}} = {x^{2018}} + C \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + {C_0}\)
Mà \(f\left( 0 \right) = 2018 \Rightarrow 2018 = {C_0} \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + 2018 \Leftrightarrow f\left( x \right) = {x^{2018}}{e^{2018x}} + 2018{e^{2018x}}\)
\( \Rightarrow f\left( 1 \right) = {e^{2018}} + 2018{e^{2018}} = 2019{e^{2018}}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Hưng Yên lần 2