Cho hàm số \(f\left( x \right) = a{x^4} + 2b{x^3} - 3c{x^2} - 4dx + 5h\,\,\left( {a,\,\,b,\,\,c,\,\,d,\,\,h \in \mathbb{Z}} \right)\). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên. Tập nghiệm thực của phương trình \(f\left( x \right) = 5h\) có số phần tử bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\\x = 1\end{array} \right.\).
Ta có BBT của hàm số \(y = f\left( x \right)\) như sau :
Ta có : \(f\left( 0 \right) = 5h\).
Số nghiệm của phương trình \(f\left( x \right) = 5h\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 5h\) song song với trục hoành.
Dựa vào BBT ta thấy phương trình \(f\left( x \right) = 5h\) có 4 nghiệm phân biệt.
Chọn B.