Cho \(f\left( x \right)=\frac{4m}{\pi }+{{\sin }^{2}}x\). Tìm tham số m để nguyên hàm \(F\left( x \right)\) của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right)=1\) và \(F\left( \frac{\pi }{4} \right)=\frac{\pi }{8}\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(F\left( x \right) = \int {\left( {\frac{{4m}}{\pi } + {{\sin }^2}x} \right)} dx = \int {\left( {\frac{{4m}}{\pi } + \frac{{1 - {\rm{cos}}2x}}{2}} \right)} dx = \int {\left( {\frac{{4m}}{\pi } + \frac{1}{2} - \frac{{{\rm{cos}}2x}}{2}} \right)} dx = \left( {\frac{{4m}}{\pi } + \frac{1}{2}} \right)x - \frac{1}{4}\sin 2x + C.\)
Từ \(\left\{ \begin{array}{l} F\left( 0 \right) = C = 1;\\ F\left( {\frac{\pi }{4}} \right) = \left( {\frac{m}{4} + \frac{1}{2}} \right) \cdot \frac{\pi }{8} - \frac{1}{4}\sin \frac{\pi }{2} + C = \frac{\pi }{8} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow m = \frac{1}{4}\)