Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\). Tam giác \(SAB\) nằm trên mặt phẳng vuông góc với đáy và có \(SA = a,{\mkern 1mu} {\mkern 1mu} \,\,SB = a\sqrt 3 .\) Tính V khối chóp \(SACD\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{SA = a}\\{SB = a\sqrt 3 }\\{AB = 2a}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{S{A^2} = {a^2}}\\{S{B^2} = 3{a^2}}\\{A{B^2} = 4{a^2}}\end{array}} \right.\)
\( \Rightarrow S{A^2} + S{B^2} = A{B^2}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( { = 4{a^2}} \right).\)
\( \Rightarrow \Delta SAB\) là tam giác vuông tại S.
Kẻ \(SH \bot AB = \left\{ H \right\}.\)
Khi đó áp dụng hệ thức lượng trong \(\Delta SAB\) vuông tại \(S\) ta có:
\(\begin{array}{*{20}{l}}{SH = \dfrac{{SA.SB}}{{AB}} = \dfrac{{a.a\sqrt 3 }}{{2a}} = \dfrac{{a\sqrt 3 }}{2}.}\\{ \Rightarrow {V_{SACD}} = \dfrac{1}{3}SH.{S_{ACD}} = \dfrac{1}{3}SH.\dfrac{1}{2}AD.DC}\\{ = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{1}{2}.4{a^2} = \dfrac{{{a^2}\sqrt 3 }}{3}.}\end{array}\)
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2023-2024
Trường THPT Trần Hữu Trang