Trong mặt phẳng \(Oxy\), đường tròn đi qua ba điểm \(A\left( {1;2} \right)\), \(B\left( {5;2} \right)\), \(C\left( {1; - 3} \right)\) có phương trình là?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(\left( C \right)\) là phương trình đường tròn đi qua ba điểm \(A,B,C\) với tâm \(I\left( {a;b} \right)\)
\( \Rightarrow \left( C \right)\)có dạng: \({x^2} + {y^2} - 2ax - 2by + c = 0\). Vì đường tròn \(\left( C \right)\) đi qua qua ba điểm \(A,B,C\) nên ta có hệ phương trình:
\(\left\{ \begin{array}{l}1 + 4 - 2a - 4b + c = 0\\25 + 4 - 10a - 4b + c = 0\\1 + 9 - 2a + 6b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2a - 4b + c = - 5\\ - 10a - 4b + c = - 29\\ - 2a + 6b + c = - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\\c = - 1\end{array} \right.\).
Vậy phương trình đường tròn cần tìm là \({x^2} + {y^2} - 6x + y - 1 = 0\).
Đáp án C.
Đề thi giữa HK2 môn Toán 10 KNTT năm 2023-2024
Trường THPT Việt Đức