Sắp xếp các số theo thứ tự tăng dần: \(2\dfrac{1}{4}\,\,;\,\,\sqrt {16} \,\,;\,\, - \sqrt {83} \,\,;\,\, - \left| { - \sqrt {196} } \right|\,\,;\,\, - 0,0\left( {51} \right)\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\begin{array}{l}2\dfrac{1}{4} = \dfrac{9}{4} = 2,25\\\sqrt {16} = \sqrt {{4^2}} = 4\\ - \left| { - \sqrt {196} } \right| = - \left| {\sqrt {196} } \right| = - \sqrt {196} \end{array}\)
*Vì \(2,25 < 4\) nên \(2\dfrac{1}{4} < \sqrt {16} \) (*)
*Vì \(83 < 196\) nên \(\sqrt {83} < \sqrt {196} \) suy ra \( - \sqrt {83} > - \sqrt {196} \) hay \( - \sqrt {83} > - \left| { - \sqrt {196} } \right|\) (1)
Vì \(0,0\left( {51} \right) < 1 = \sqrt 1 < \sqrt {83} \) suy ra \( - \sqrt {83} < - 1 < - 0,0\left( {51} \right)\) (2)
Từ (1) và (2), suy ra \( - \left| { - \sqrt {196} } \right| < - \sqrt {83} < - 0,0\left( {51} \right)\) (**)
Từ (*) và (**), suy ra \( - \left| { - \sqrt {196} } \right| < - \sqrt {83} < - 0,0\left( {51} \right) < 2\dfrac{1}{4} < \sqrt {16} \)
Vậy thứ tự tăng dần của các số là: \( - \left| { - \sqrt {196} } \right|\,\,;\,\, - \sqrt {83} \,\,;\,\, - 0,0\left( {51} \right)\,\,;\,\,2\dfrac{1}{4}\,\,;\,\,\sqrt {16} .\)
Chọn C.
Đề thi giữa HK1 môn Toán 7 năm 2023-2024
Trường THCS Nguyễn Tất Thành