Rút gọn \(A=\frac{\sqrt{x}+1}{x+4 \sqrt{x}+4}:\left(\frac{x}{x+2 \sqrt{x}}+\frac{x}{\sqrt{x}+2}\right), \text { với } x>0\) ta được
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có
\(\begin{aligned} A &=\frac{\sqrt{x}+1}{x+4 \sqrt{x}+4}:\left(\frac{x}{x+2 \sqrt{x}}+\frac{x}{\sqrt{x}+2}\right)=\frac{\sqrt{x}+1}{(\sqrt{x}+2)^{2}}:\left(\frac{x}{\sqrt{x}(\sqrt{x}+2)}+\frac{x}{\sqrt{x}+2}\right) \\ &=\frac{\sqrt{x}+1}{(\sqrt{x}+2)^{2}}:\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{x}{\sqrt{x}+2}\right) \\ &=\frac{\sqrt{x}+1}{(\sqrt{x}+2)^{2}}: \frac{\sqrt{x}+x}{\sqrt{x}+2}=\frac{\sqrt{x}+1}{(\sqrt{x}+2)^{2}}: \frac{\sqrt{x}(1+\sqrt{x})}{\sqrt{x}+2} \\ &=\frac{\sqrt{x}+1}{(\sqrt{x}+2)^{2}} \cdot \frac{\sqrt{x}+2}{\sqrt{x}(1+\sqrt{x})}=\frac{1}{\sqrt{x}(\sqrt{x}+2)} \end{aligned}\)
Chọn đáp án B