Cho hình vuông ABCD có cạnh bằng a và có diện tích \({S_1}\). Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là \({A_2}{B_2}{C_2}{D_2}\) có diện tích S3, …và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích S4, S5,…, S100 (tham khảo hình bên). Tính tổng \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({S_1} = {a^2}\); \({S_2} = \frac{1}{2}{a^2}\); \({S_3} = \frac{1}{4}{a^2}\),…
Do đó S1, S2, S3,…, S100 là cấp số nhân với số hạng đầu \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{1}{2}\).
Suy ra \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}} = {S_1}.\frac{{1 - {q^n}}}{{1 - q}} = \frac{{{a^2}\left( {{2^{100}} - 1} \right)}}{{{2^{99}}}}\).
Đề thi giữa HK2 môn Toán 11 năm 2021
Trường THPT Thủ Khoa Huân