ADMICRO

Cho hàm số \(f\left( x \right)\) đồng biến và có đạo hàm cấp 2 trên đoạn \(\left[ {0;2} \right]\) và thỏa mãn \(2{\left[ {f\left( x \right)} \right]^2} - f\left( x \right)f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2} = 0\) với \(\forall x \in \left[ {0;2} \right]\). Biết \(f\left( 0 \right) = 1,f\left( 2 \right) = {e^6}\), tính tích phân \(I = \int\limits_{ - 2}^0 {\left( {2{\rm{x}} + 1} \right)f\left( x \right)d{\rm{x}}} \) bằng?

Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án

ADSENSE / 9
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Đề thi giữa HK2 môn Toán 12 năm 2023-2024

Trường THPT Võ Văn Kiệt

26/11/2024
52 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK