ADMICRO
Cho đường tròn (O;R) có hai dây cung AB và CD vuông góc với nhau tại I ( C thuộc cung nhỏ AB ). Kẻ đường kính BE của (O). Đẳng thức nào sau đây là đúng?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 9
Lời giải:
Báo saiXét (O) có BE là đường kính và A∈(O) ⇒AE⊥AB mà CD⊥AB ⇒ AE//CD
Nên cung AC bằng cung ED hay AC=ED.
Xét các tam giác vuông ΔIAC và ΔIBD ta có
\(\begin{array}{l} I{A^2} + I{C^2} = A{C^2};I{B^2} + I{D^2} = B{D^2}\\ \to I{A^2} + I{C^2} + I{B^2} + I{D^2} = A{C^2} + B{D^2} = E{D^2} + B{D^2} \end{array}\)
Mà ΔBED vuông tại D nên \( E{D^2} + B{D^2} = E{B^2} = {(2R)^2} = 4{R^2}\)
Vậy \(I{A^2} + I{C^2} + I{B^2} + I{D^2} =4{R^2}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK