Cho các chữ số 1, 2, 3, …,9. Từ các số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiMột số gồm 4 chữ số phân biệt lập thành từ các chữ số A={1; 2; 3; …; 9} có dạng:
\(\overline {{a_1}{a_2}{a_3}{a_4}} \), với \({a_i} \in A,i = \overline {1,4} \)và \({a_i} \ne {a_j},i \ne j.\)
Do \(\overline {{a_1}{a_2}{a_3}{a_4}} \) không vượt quá 2011 nên \({a_1} = 1\)- có 1 cách chọn.
Mặt khác, \(\overline {{a_1}{a_2}{a_3}{a_4}} \) là số chẵn nên \({a_4} \in \left\{ {2;4;6;8} \right\}\) - có \(C_4^1\) cách chọn.
Khi đó,\({a_3}\) - có \(C_7^1\) cách chọn.
\({a_2}\) - có \(C_6^1\) cách chọn.
Số cách chọn là \(1.C_4^1.C_7^1.C_6^1 = 168\)
Chọn A.
Đề thi giữa HK1 môn Toán 11 năm 2021-2022
Trường THPT Phan Bội Châu