Cho biểu thức \(A = \left( {\frac{1}{{x - 2}} - \frac{{2x}}{{4 - {x^2}}} + \frac{1}{{2 + x}}} \right).\left( {\frac{2}{x} - 1} \right)\). Rút gọn A?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saia) ĐKXĐ: \(\left\{ \begin{array}{l}x - 2 \ne 0\\4 - {x^2} \ne 0\\2 + x \ne 0\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne - 2\\x \ne 0\end{array} \right.\)
Ta có: \(A = \left( {\frac{1}{{x - 2}} - \frac{{2x}}{{4 - {x^2}}} + \frac{1}{{2 + x}}} \right).\left( {\frac{2}{x} - 1} \right)\)
\(\begin{array}{l} = \left( {\frac{1}{{x - 2}} + \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{x + 2}}} \right).\left( {\frac{{2 - x}}{x}} \right)\\ = \left( {\frac{{x + 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{2x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{x - 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}} \right).\left( {\frac{{2 - x}}{x}} \right)\\ = \frac{{x + 2 + 2x + x - 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}.\frac{{2 - x}}{x}\\ = \frac{{4x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}.\frac{{2 - x}}{x}\\ = \frac{{ - 4}}{{x + 2}}\end{array}\)
Vậy \(A = \frac{{ - 4}}{{x + 2}}\).
Chọn D
Đề thi giữa HK2 môn Toán 8 KNTT năm 2023-2024
Trường THCS Hoà Bình