Cho hai biến cố A và B có \(P(A) = 0,8, P(B) = 0,5, P(AB) = 0,2\). Xác suất của biến cố A với điều kiện B là
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Kết Nối Tri Thức Với Cuộc Sống – Bộ Đề 01 được xây dựng theo định hướng phát triển năng lực, phù hợp với học sinh đang ôn tập học kỳ II và chuẩn bị cho kỳ thi THPT. Cấu trúc đề gồm 3 phần chính: Phần A. Trắc Nghiệm, với Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Nội dung kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Đây là tài liệu bám sát chương trình, hỗ trợ hiệu quả trong việc hệ thống hóa kiến thức và luyện đề kiểm tra chất lượng.
Câu hỏi liên quan
Cho hai biến cố \(A\),\(B\) là hai biến cố độc lập với \(P\left( A \right)=0,1997,\,\,P\left( B \right)=0,1994.\) Tính \(P\left( A|B \right).\)
Một khu dân cư có \(60\text{ }\!\!%\!\!\text{ }\) các hộ gia đình có không quá 4 thành viên. Trong các gia đình có không quá 4 thành viên, có \(20\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống; trong các gia đình có trên 4 thành viên, có \(70\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống. Chọn ngẫu nhiên 1 hộ gia đình trong khu dân cư. Biết rằng gia đình đó có ba thế hệ cùng chung sống, tính xác suất để gia đình đó có trên 4 thành viên.
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là \({0{,}4}\) và xác suất Bình ném trúng đều là \({0{,}6}\). Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng \({0{,}5}\). Tìm xác suất để người ném bóng lần thứ \({2}\) là Bình.
Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có \(6\)viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên \(1\) viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm \(1\) viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu viên kẹo?
Một hộp chứa 10 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 10. Bạn Cường lấy ra đồng thời 2 tấm thẻ từ hộp. Tính xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 (làm tròn kết quả đến hàng phần trăm).
Một thư viện có hai phòng riêng biệt, phòng A và phòng B.Xác suất chọn được một quyển sách về chủ đề Khoa học tự nhiên thuộc phòng A và thuộc phòng B lần lượclà 0,25 và 0,5. Chọn ngẫu nhiên 1 quyển sách của thư viện ; tính xác suất để chọn được 1 cuốn sách phòng A và thuộc chủ đề Khoa học tự nhiên là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Cho A và B là hai biến cố bất kì, với \(P\left( B \right)>0\). Khi đó:
Một phân xưởng của nhà máy phân bón A có 10 máy trộn phân bón hoạt động một cách độc lập với nhau. Nhân viên bảo trì của nhà máy xác định rằng lúc nào cũng sẽ có đúng 2 máy hỏng để bảo trì. Tìm xác suất để máy thứ nhất không hỏng. Biết rằng xác suất hỏng của các máy là như nhau và bằng \(0,1\).
Trước khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó. Kết quả thống kê như sau: có 105 người trả lời “sẽ mua”; có 95 người trả lời “không mua”. Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời “sẽ mua” và “không mua” lần lượt là 70% và 30%.
Gọi A là biến cố “Người được phỏng vấn thực sự sẽ mua sản phẩm”.
Gọi B là biến cố “Người được phỏng vấn trả lời sẽ mua sản phẩm”.
Một nhà bán hàng A vì lợi nhuận của bản thân nên đã nhập về một lô hàng bánh kẹo giả kém chất lượng và giống y hết bên ngoài với các loại bánh kẹo chính hãng. Mỗi thùng bánh kẹo được đóng gói với số lượng giống nhau (24 gói bánh kẹo/thùng). Sau đó, để qua mắt lực lượng chức năng nhà bán hàng trộn lẫn kẹo giả và mỗi thùng kẹo chính hãng và chia làm 3 loại:
• Loại I để lẫn vào mỗi thùng 3 gói bánh kẹo hàng giả.
• Loại II để lẫn vào mỗi thùng 2 gói bánh kẹo hàng giả.
• Loại III để lẫn vào mỗi thùng có 4 gói bánh kẹo hàng giả.
Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II và số thùng loại II gấp 3 lần thùng loại III.
Sau đó nhà bán hàng A nhằm kiểm tra thử xem khi lực lượng chức năng vào kiểm tra có thể qua mắt được hay không? Bằng cách chọn ngẫu nhiên 1 thùng từ trong kho, từ đó chọn ngẫu nhiên 10 gói bánh kẹo bất kì. Tính xác suất để lấy được 2 gói bánh kẹo giả kém chất lượng (làm tròn đến kết quả phần chục).
Mỗi hộp đựng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèrn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, biết cả hai bóng đều bị hỏng. Xác xuất để lấy ra hai bóng đèn màu xanh bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).
Cho \(P(A) = \frac{2}{5}\), \(P(B|A) = \frac{1}{4}\). Giá trị của \(P(B \cap A)\) là:
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Ở vùng A có hai nhóm, nhóm 1 là nhóm người có thu nhập tốt (trên 15 triệu đồng/tháng) và nhóm 2 là nhóm có thu nhập không tốt. Ở vùng A có 40% người có thu nhập tốt và 58% người không gửi tiết kiệm. Khảo sát độc lập những người thuộc nhóm 1 và nhóm 2 và tính tỉ lệ phần trăm số người gửi tiết kiệm của từng nhóm thì thấy rằng: Tỷ lệ người gửi tiết kiệm của nhóm 1 gấp đôi tỉ lệ người tiết kiệm của nhóm 2. Giả sử một người ở vùng A không gửi tiết kiệm. Xác suất để người ấy có thu nhập tốt là bao nhiêu % (kết quả làm tròn đến hàng phần chục).
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Cho hai biến cố \(A\) : “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 6” và \(B\): “Con xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Có bao nhiêu kết quả thuận lợi cho biến cố \(A\) khi biến cố \(B\) xảy ra?
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: “Viên bi lấy ra lần thứ nhất là bi đen”;
Và B: “Viên bi lấy ra lần thứ hai là bi trắng”.
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B.
Cho \(A,B\) là các biến cố của một phép thử \(T.\) Biết rằng \(P\left( B \right)>0,\) xác suất của biến cố \(A\) với điều kiện biến cố \(B\) đã xảy ra được tính theo công thức nào sau đây?
Hãy xác định tính Đúng-Sai của các khẳng định.
Lớp 12A có \({40}\) học sinh, trong đó có \({25}\) học sinh tham gia câu lạc bộ Tiếng Anh, \({16}\) học sinh tham gia câu lạc bộ Toán, \({12}\) học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
\({A}\): Học sinh được chọn tham gia câu lạc bộ Tiếng Anh;
\({B}\): Học sinh được chọn tham gia câu lạc bộ Toán.
Một nhóm các nhà khoa học gồm \(4\) nhà toán học nam; \(3\) nhà toán học nữ và \(4\) nhà vật lí học nam. Lấy ngẫu nhiên ba người. Xác suất trong ba người có cả nam và nữ, cả toán và lí bằng? (Kết quả làm tròn đến hàng phần trăm)
Một hộp chứa 10 viên bi xanh và 5 viên bi đỏ. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp, xem màu, rồi bỏ ra ngoài. Nếu viên bi An lấy ra có màu xanh, bạn Bình sẽ lấy ra ngẫu nhiên 2 viên bi từ hộp; còn nếu viên bi An lấy ra có màu đỏ, bạn Bình sẽ lấy ra ngẫu nhiên 3 viên bi từ hộp. Tính xác suất để An lấy được viên bi màu xanh, biết rằng tất cả các viên bi được hai bạn chọn ra đều có đủ cả hai màu. (kết quả làm tròn đến hàng phần trăm).