Một hộp chứa 10 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 10. Bạn Cường lấy ra đồng thời 2 tấm thẻ từ hộp. Tính xác suất để tích hai số ghi trên hai thẻ chia hết cho 6 (làm tròn kết quả đến hàng phần trăm).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Ta có \(\mathrm{P}(\overline{\mathrm{A}})=\frac{2}{9} ; \mathrm{P}(\overline{\mathrm{B}})=\frac{7}{15}\) và \(\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\frac{1}{15}\). Do đó xác suất để tích hai số ghi trên hai thè chia hết cho 6 là
\(\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1-\mathrm{P}(\overline{\mathrm{A} \cap \mathrm{B}})=1-\mathrm{P}(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})=1-\mathrm{P}(\overline{\mathrm{A}})-\mathrm{P}(\overline{\mathrm{B}})+\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})\)
\(=1-\frac{2}{9}-\frac{7}{15}+\frac{1}{15}=\frac{17}{45} \approx 0,38\).
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Cánh Diều – Bộ Đề 01 giúp học sinh ôn luyện chuyên sâu theo định hướng thi cuối cấp. Đề thi có 3 phần theo cấu trúc mới nhất: Phần A. Trắc Nghiệm, bao gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Các nội dung chính được kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Câu hỏi được xây dựng với mức độ phân hóa hợp lý, phù hợp cho cả kiểm tra giữa kỳ và chuẩn bị thi tốt nghiệp THPT.
Câu hỏi liên quan
Cho hai biến cố \(A\) và \(B\). Xác suất của biến cố \(B\), tính trong điều kiện biết rằng biến cố \(A\) đã xảy ra, được gọi là xác suất của \(B\) với điều kiện \(A\) kí hiệu là:
Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ.
Cho hai biến cố A, B là hai biến cố độc lập với \(P(A) = 0,1997\), \(P(B) = 0,1994\). Tính \(P(A|B)\).
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là \({0{,}4}\) và xác suất Bình ném trúng đều là \({0{,}6}\). Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng \({0{,}5}\). Tìm xác suất để người ném bóng lần thứ \({2}\) là Bình.
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \(\frac{a}{b}\). Khi đó giá trị của biểu thức \(T=\frac{1}{2}a+b\) bằng bao nhiêu ?
Một doanh nghiệp có \(45\%\) nhân viên là nữ. Tỉ lệ nhân viên nữ có bằng đại học là \(30\%\) và tỉ lệ nhân viên nam có bằng đại học là \(25\%\). Chọn ngẫu nhiên 1 nhân viên Nam và 1 nhân viên nữ của doanh nghiệp. Biết rằng chỉ một trong hai nhân viên có bằng đại học, tính xác suất người đó là nhân viên nữ. (Làm tròn kết quả đến hàng phần trăm).
Cho hai biến cố \(A,B\) có xác suất \(P \left( A \right)=0,4;\,P \left( B \right)=0,6;\,\,P \left( AB \right)=0,2\). Tính xác suất \(P \left( A|B \right)\).
Cho A và B là hai biến cố bất kì, với \(P\left( B \right)>0\). Khi đó:
Mỗi hộp đụng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, tính xác xuất để lấy ra hai bóng đèn màu xanh, biết cả hai bóng đều bị hỏng (kết quả làm tròn đến hàng phần trăm).
Một nhà bán hàng A vì lợi nhuận của bản thân nên đã nhập về một lô hàng bánh kẹo giả kém chất lượng và giống y hết bên ngoài với các loại bánh kẹo chính hãng. Mỗi thùng bánh kẹo được đóng gói với số lượng giống nhau (24 gói bánh kẹo/thùng). Sau đó, để qua mắt lực lượng chức năng nhà bán hàng trộn lẫn kẹo giả và mỗi thùng kẹo chính hãng và chia làm 3 loại:
• Loại I để lẫn vào mỗi thùng 3 gói bánh kẹo hàng giả.
• Loại II để lẫn vào mỗi thùng 2 gói bánh kẹo hàng giả.
• Loại III để lẫn vào mỗi thùng có 4 gói bánh kẹo hàng giả.
Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II và số thùng loại II gấp 3 lần thùng loại III.
Sau đó nhà bán hàng A nhằm kiểm tra thử xem khi lực lượng chức năng vào kiểm tra có thể qua mắt được hay không? Bằng cách chọn ngẫu nhiên 1 thùng từ trong kho, từ đó chọn ngẫu nhiên 10 gói bánh kẹo bất kì. Tính xác suất để lấy được 2 gói bánh kẹo giả kém chất lượng (làm tròn đến kết quả phần chục).
Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có \(6\)viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên \(1\) viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm \(1\) viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu viên kẹo?
Khảo sát thị lực của \(100\) học sinh ta thu được bảng số liệu sau:
Chọn ngẫu nhiên một bạn trong số \(100\) bạn học sinh nói trên. Gọi \(A\) là biến cố “Học sinh được chọn có tật khúc xạ” và \(B\) là biến cố “Học sinh được chọn là nữ”. Giá trị biểu thức \(P\left( B \right).P\left( A|B \right)+P\left( \overline{B} \right).P\left( A|\overline{B} \right)\) bằng:
Một hộp chưa 9 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 9. Bạn An lấy ra ngẫu nhiên 1 thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số 10, 11; ngược lại, An cho thêm vào hộp thẻ số 12, 13, 14. Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời 3 thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho 2. (Làm tròn kết quả đến hàng phần trăm).
Trong cơ quan có \(100\) người. Trong đó có \(60\) người gần cơ quan (trong đó có \(40\) người là nam), có tổng cộng \(30\) nữ nhân viên. Theo quy định của cơ quan thì người nào hoặc là nam hoặc gần cơ quan sẽ phải tham gia trực. Tính xác suất để chọn ngẫu nhiên một người trong danh sách mà người đó lại là nữ trực cơ quan? (Kết quả làm tròn đến hàng phần trăm)
Cho A và B là hai biến cố. \(P(A) = 0,7, P(B|A) = 0,9.\) Tính \(P(AB).\)
Một phân xưởng của nhà máy phân bón A có 10 máy trộn phân bón hoạt động một cách độc lập với nhau. Nhân viên bảo trì của nhà máy xác định rằng lúc nào cũng sẽ có đúng 2 máy hỏng để bảo trì. Tìm xác suất để máy thứ nhất không hỏng. Biết rằng xác suất hỏng của các máy là như nhau và bằng \(0,1\).
Ở một thị xã, tỉ lệ mắc căn bệnh M là 22%. Chính quyền thị xã đó muốn biết danh sách những người bị mắc bệnh nên đã tổ chức xét nghiệm cho toàn bộ người dân. Tuy nhiên bộ “test” được sử dụng trong phương pháp xét nghiệm này có những sai sót nhất định:
- Nếu một người không bị bệnh thì xác suất bộ “test” cho ra kết quả dương tính là 10%.
- Nếu bộ “test” cho ra kết quả dương tính thì xác suất bị bệnh là 70%.
Một khu dân cư có \(60\text{ }\!\!%\!\!\text{ }\) các hộ gia đình có không quá 4 thành viên. Trong các gia đình có không quá 4 thành viên, có \(20\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống; trong các gia đình có trên 4 thành viên, có \(70\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống. Chọn ngẫu nhiên 1 hộ gia đình trong khu dân cư. Biết rằng gia đình đó có ba thế hệ cùng chung sống, tính xác suất để gia đình đó có trên 4 thành viên.
Cho hai biến cố \(A\) và \(B\), với \(P\left( A \right)=0,6\), \(P\left( B \right)=0,7\), \(P\left( A\cap B \right)=0,3\). Tính \(P\left( A|B \right)\).
Mỗi hộp đựng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèrn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, biết cả hai bóng đều bị hỏng. Xác xuất để lấy ra hai bóng đèn màu xanh bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).