Có hai xã \(A,\,B\) cùng ở một bên bờ sông. Khoảng cách từ hai xã đó đến bờ sông lần lượt là \(A{A}'=500m\), \(B{B}'=600m\). Người ta đo được \({A}'{B}'=2200m\) như hình vẽ dưới đây. Các kỹ sư muốn xây dựng một trạm cung cấp nước sạch nằm bên bờ sông cho người dân của hai xã sử dụng. Để tiết kiệm chi phí, các kỹ sư phải chọn một vị trí \(M\) của trạm cung cấp nước sạch đó trên đoạn \({A}'{B}'\) sao cho tổng khoảng cách từ hai xã đến vị trí \(M\) là nhỏ nhất. Giá trị nhỏ nhất của tổng khoảng cách đó bằng bao nhiêu mét? (làm tròn kết quả đến hàng đơn vị).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Đặt \({A}'M=x\,\,\left( 0<x<2200 \right)\), \({B}'M=2200-x\).
Ta có \(AM=\sqrt{{{x}^{2}}+{{500}^{2}}}\,,\,\,BM=\sqrt{{{\left( 2200-x \right)}^{2}}+{{600}^{2}}}\).
Khi đó tổng khoảng cách từ hai xã đến vị trí \(M\) là:
\(AM+BM=\sqrt{{{x}^{2}}+{{500}^{2}}}\,+\sqrt{{{\left( 2200-x \right)}^{2}}+{{600}^{2}}}\).
Xét hàm số \(f\left( x \right)=\sqrt{{{x}^{2}}+{{500}^{2}}}\,+\sqrt{{{\left( 2200-x \right)}^{2}}+{{600}^{2}}}\) trên khoảng \(\left( 0;\,2200 \right)\).
Đạo hàm \({f}'\left( x \right)=\frac{x}{\sqrt{{{x}^{2}}+{{500}^{2}}}}-\frac{2200-x}{\sqrt{{{\left( 2200-x \right)}^{2}}+{{600}^{2}}}}=0\Leftrightarrow x=1000\).
Bảng biến thiên:
Vậy giá trị nhỏ nhất của tổng khoảng cách từ hai xã đó đến bờ sông là khoảng \(2460~m\), tại vị trí \(M\) cách điểm \({A}'\) là \(1000~m\).
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 - Toán - Bộ Đề 05 được biên soạn để giúp học sinh ôn tập toàn diện và làm quen với định dạng đề thi tốt nghiệp THPT Quốc gia. Đề thi có thời gian làm bài 90 phút, bao phủ toàn bộ chương trình Toán THPT, trong đó chủ yếu là kiến thức lớp 12 (75-85%) và một phần được chọn lọc từ lớp 10, 11, giúp học sinh củng cố và liên kết các kiến thức toán học qua các năm học. Các chuyên đề quan trọng như hàm số, đạo hàm, tích phân, phương trình bậc hai, hình học không gian, tổ hợp - xác suất, số phức, và phương pháp tọa độ đều được đưa vào trong đề thi. Cấu trúc đề thi gồm ba phần: Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai và Câu Trắc Nghiệm Trả Lời Ngắn, giúp học sinh tiếp cận đa dạng các dạng bài tập từ cơ bản đến nâng cao. Đây là tài liệu ôn luyện hữu ích, giúp học sinh phát triển tư duy toán học và chuẩn bị vững vàng cho kỳ thi tốt nghiệp THPT 2025.
Câu hỏi liên quan
Một người nông dân có 15 000 000 đồng để làm một cái hàng rào hình chữ E dọc theo con sông (như hình vẽ) để làm một khu đất có hai phần chữ nhật để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí vật liệu là 60 000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50 000 đồng một mét. Tìm diện tích lớn nhất của đất rào thu được.
Theo thống kê tại một nhà máy \(Z\) nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 tổ công nhân đi làm và mỗi tổ công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 tổ công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 tổ/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là \(P\left( x \right)=\frac{95{{x}^{2}}+120x}{4}\) với \(x\) là thời gian làm việc trong một tuần. Nhà máy cần áp dụng thời gian làm việc mỗi tuần mấy giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất?
Nhà ông Hải có một cái cổng hình chữ nhật, lối vào cổng có dạng parabol có kích thước như hình vẽ.
Ông Hải cần trang trí bề mặt (phần gạch chéo) của cổng. Hỏi ông Hải cần bao nhiêu tiền (đơn vị: triệu đồng) để trang trí, biết giá thành trang trí là 1200000 đồng/m²?
Nhằm nâng cao cơ sở vật chất cho trường, anh Hùng đang cần đặt hàng làm một chiếc bảng tương tác thông minh hình chữ nhật \(a\times b\) có chức năng cảm ứng để phục vụ cho việc dạy học, biết rằng nếu cả chiều \(b\) đều tăng thêm một nửa thì bảng sẽ có kích thước là 85 inch (quy ước \(1\text{ }inch=2,54cm\) và kích thước ấy được đo bởi đường chéo của màn hình). Tiếp đến anh Hùng muốn phủ lớp chống lóe với 7500 đồng cho mỗi mét vuông trên màn (xem như độ dày của phần phủ là không đáng kể) và 15000 đồng mỗi mét phần silicon được dán ở viền ngoài cùng của màn hình. Vậy tổng số tiền cao nhất anh Hùng có thể bỏ ra để phủ lớp chống lóe và dán silicon là bao nhiêu nghìn đồng? (làm tròn đến phần nguyên).
Một nhà máy sản xuất \(\text{ }x\) sản phẩm trong mỗi tháng. Chi phí sản xuất \(x\) sản phẩm được cho bởi hàm chi phí
\(C\left( x \right)=16\,000+500x-1,6{{x}^{2}}+0,004{{x}^{3}}\) (nghìn đồng).
Biết giá bán của của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm \(x\) và được cho bởi công thức \(p\left( x \right)=1700-7x\) (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ được tiêu thụ hết.
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếMột cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần. Gọi \(x\) là số ti vi bán được mỗi tuần, \(p\) (triệu đồng) là giá bán của mỗi ti vi. Khi đó \(p=p\left( x \right)\) được gọi là hàm cầu.
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy \(B\). Hai nhà máy thoả thuận rằng, hàng tháng nhà máy \(A\) cung cấp cho nhà máy \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm. Nhà máy \(A\) cần bán cho nhà máy \(B\) bao nhiêu tấn sản phẩm mỗi tháng để lợi nhuận thu được lớn nhất? (Làm tròn kết quả đến hàng phần mười).
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất \(x\) sản phẩm \(\left( 1\le x\le 500 \right)\) thì doanh thu nhận được khi bán hết số sân phẳm đó là: \(F\left( x \right)={{x}^{3}}-1999{{x}^{2}}+1001000x+250000\) (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là: \(G\left( x \right)=x+1000+\frac{250000}{x}\) (đồng).
Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Một cái cổng hình parabol như hình bên. Chiều cao \({GH=4}\) m, chiều rộng \({AB=4}\) m, \({AC=BD=0{,}9}\) m. Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \({CDEF}\) tô đậm với giá \({1\,200\,000}\) đồng/m\({^2}\), phần còn lại làm khung hoa sắt với giá \({900\,000}\) đồng/\({{m}^{2}}\).
Một nguời bình thường với chiều cao \(h\text{ }\!\!~\!\!\text{ cm}\), nặng \(w\) kilogram có diện tích bề mặt cơ thể \(S\) được mô hình hoá bởi công thức \(S=\frac{1}{60}\cdot {{w}^{0.5}}\cdot {{h}^{0.5}}\) (\({{\text{m}}^{2}}\)) (công thức Mosteller). Một đối tượng có chiều cao bằng 168 cm, nặng 62 kg tham gia một cuộc nghiên cứu về sức khỏe trong 5 năm. Người ta nhận thấy cân nặng của đối tượng quan sát thay đổi với tốc độ \({w}'\left( t \right)=0,02{{t}^{2}}+0,2t\text{ }\!\!~\!\!\text{ kg}/\) năm \(\left( 0\le t\le 5 \right)\) và chiều cao tăng đều mỗi năm \(0,5\text{ }\!\!~\!\!\text{ cm}\). Sau 5 năm quan sát, diện tích bề mặt cơ thề của đối tượng trên tăng thêm bao nhiêu centimet vuông so với ban đầu? (làm tròn kết quả đến hàng đơn vi).
Độ pH của một dung dịch là đại lượng đặc trưng cho mức độ acid, base của một dung dịch. pH liên hệ trực tiếp với nồng độ \({{\text{H}}^{+}}\)thông qua biểu thức sau:
\(\text{pH}=-\text{lo}{{\text{g}}_{10}}\left( \left[ {{\text{H}}^{+}} \right] \right).\)
Trong đó: \(\left[ {{\text{H}}^{+}} \right]\left( \text{mol}/\text{L} \right)\): là nồng độ của ion \({{\text{H}}^{+}}\)có trong dung dịch cần xét.
Hơn nữa:
\(\text{pH}=-\text{lo}{{\text{g}}_{10}}\left( \frac{{{10}^{-14}}}{\left[ \text{O}{{\text{H}}^{-}} \right]} \right)\).
Trong đó: \(\left[ \text{O}{{\text{H}}^{-}} \right]\left( \text{mol}/\text{L} \right)\): là nồng độ của ion \(\text{O}{{\text{H}}^{-}}\)có trong dung dịch cần xét.
Xét thí nghiệm hóa học dưới đây:
Người ta muốn xác định độ pH của một dung dịch bằng cách trộn \(0,2\left( L \right)\) dung dịch \({{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}\) có \({{\text{n}}_{{{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}}}=0,02\text{ }\!\!~\!\!\text{ mol}\) với \(0,5\left( L \right)\) dung dịch NaOH có \({{\text{n}}_{\text{NaOH}}}=0,06\text{ }\!\!~\!\!\text{ mol}\). Tính độ pH của dung dịch tạo thành (làm tròn đến chữ số thập phân thứ nhất).
Giả sử 4 thành phố A, B, C, D với khoảng cách (đơn vị: km) giữa các thành phố được cho bởi bảng sau:
Hãy tính quãng đường ngắn nhất để đi qua tất cả các thành phố đúng một lần rồi quay lại thành phố xuất phát?
Trong âm nhạc, khoảng cách giữa hai nốt nhạc trong một quãng được tính bằng cung và nửa cung (nc). Mỗi quãng tám được chia thành 12 nc. Hai nốt nhạc cách nhau nc thì hai âm (cao, thấp) tương ứng với hai nốt nhạc này có tần số thỏa mãn \(f_{c}^{12}=2f_{t}^{12}\). Tập hợp tất cả các âm trong một quãng tám gọi là một gam (âm giai). Xét một gam với khoảng cách từ nốt Đồ đến các nốt tiếp theo Rê, Mi, Fa, Sol, La, Si, Đô tương ứng là 2 nc, 4 nc, 5 nc, 7 nc, 9 nc, 11 nc, 12 nc. Trong gam này, nếu âm ứng với nốt La có tần số 440 Hz thì âm ứng với nốt Sol có tần số là bao nhiêu (làm tròn đến hàng đơn vị)?
Một người cần xây một nhà kho có mặt tiền mở và sàn hình vuông và có thể tích là \(10000\,{{m}^{3}}\) Biết chi phí thi công sàn là 500 ngàn đồng/\({{m}^{2}}\), chi phí thi công vách là 800 ngàn đồng/\({{m}^{2}}\), chi phí thi công phần mái là 1 triệu đồng/\({{m}^{2}}\) Biết tổng chi phí chi phí thi công nhà kho là thấp nhất, khi đó diện tích sàn nhà kho bằng bao nhiêu mét vuông?
Ông Toàn có một mảnh đất phẳng hình elip có độ dài trục lớn bằng \({16}\) m và độ dài trục nhỏ là \({10}\) m. Ông để một dải đất rộng \({8}\) m làm sân, lối đi và dải đất này nhận trục bé của elip làm trục đối xứng đồng thời ông muốn trồnghoa hai bên mảnh đất còn lại. Biết kinh phí để trồng hoa là \({100\,000}\) đồng/m\({^2}\). Hỏi ông Toàn cần bao nhiêu triệu đồng trồng hoa trên phần đất đó (kết quả được làm tròn đến hàng trăm)?
Một bể cá đầy nước có dạng hình hộp chữ nhật \(ABCD.EFGH\) với \(AB=6\left( dm \right)\), \(AD=8\left( dm \right)\) và cạnh bên bằng \(10\left( dm \right)\). Một chú cá con bơi theo những đoạn thẳng từ điểm \(G\) đến chạm mặt đáy của hồ, rồi từ điểm đó bơi đến vị trí điểm \(M\) là trung điểm của \(AF\) được mô hình hóa như hình vẽ sau:
Để đường đi ngắn nhất thì chú cá bơi đến điểm dưới đáy hồ cách \(BA\) và \(BC\) những đoạn bằng \(a\) và \(b\). Khi đó tổng \(D=3a+6b\) bằng bao nhiêu?
Trong hình bên cho biết một hình trụ bán kính đáy \(r\left( cm \right)\), chiều cao \(h\left( cm \right)\) nội tiếp hình nón có bán kính đáy \(9\,cm\), chiều cao \(18\,cm\). Tìm giá trị của \(r\) để thể tích của hình trụ là lớn nhất. (kết quả làm tròn đến hàng đơn vị của \(cm\))
Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo kết quả kinh doanh của mình, ông ta xác định được rằng: nếu giá vé vào cửa là 20 (nghìn đồng) /người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 (nghìn đồng) /người thì sẽ mất 100 khách hàng hoặc giảm đi 1 (nghìn đồng) /người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 (nghìn đồng) lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để thu nhập là lớn nhất.
Nhà máy A chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy Hai nhà máy này thoả thuận rằng, hằng tuần A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B (tối đa 100 sản phẩm). Nếu số lượng đặt hàng là \(x\) sản phẩm thì giá bán cho mỗi sản phẩm là \(P\left( x \right)=45-0,001{{x}^{2}}\) (triệu đồng). Chi phí để A sản xuất \(x\) sản phẩm trong một tuần là \(C\left( x \right)=100+30x\) (triệu đồng) (gồm 100 triệu đồng chi phí cố định và 30 triệu đồng cho mỗi sản phẩm). Hỏi nhà máy A bán cho nhà máy B bao nhiêu sản phẩm mỗi tuần để thu được lợi nhuận nhiều nhất? (Số sản phẩm là số nguyên dương).
Hình dưới đây là mương dẫn nước thủy lợi tại một địa phương phục vụ tưới tiêu cho ruộng đồng. Phần không gian trong mương để nước chảy có mặt cắt ngang là hình chữ nhật \(ABCD\). Với điều kiện lưu lượng nước qua mương cho phép thì diện tích mặt cắt \(ABCD\) là \(0\,,48\,{{m}^{2}}\). Để đảm bảo yêu cầu kỹ thuật tốt nhất cho mương, người ta cần thiết kế sao cho tổng độ dài \(T=AB+\,BC+CD\) là ngắn nhất. Khi đó chiều rộng đáy mương bằng bao nhiêu (biết chiều rộng phải dưới 1m, làm tròn kết quả đến hàng phần trăm)?