Trả lời:
Đáp án đúng: D
Xét hàm số $y = x + \dfrac{9}{x}$ trên đoạn $[2; 4]$.
Ta có $y' = 1 - \dfrac{9}{x^2}$.
$y' = 0 \Leftrightarrow x^2 = 9 \Leftrightarrow x = \pm 3$.
Vì $x \in [2; 4]$ nên $x = 3$ là nghiệm duy nhất.
Tính giá trị của hàm số tại các điểm $x = 2, x = 3, x = 4$:
Ta có $y' = 1 - \dfrac{9}{x^2}$.
$y' = 0 \Leftrightarrow x^2 = 9 \Leftrightarrow x = \pm 3$.
Vì $x \in [2; 4]$ nên $x = 3$ là nghiệm duy nhất.
Tính giá trị của hàm số tại các điểm $x = 2, x = 3, x = 4$:
- $y(2) = 2 + \dfrac{9}{2} = \dfrac{13}{2} = 6.5$
- $y(3) = 3 + \dfrac{9}{3} = 3 + 3 = 6$
- $y(4) = 4 + \dfrac{9}{4} = \dfrac{25}{4} = 6.25$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
10/09/2025
0 lượt thi
0 / 20
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
