Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M( - 3;1)\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 6y + 6 = 0\). Gọi \({T_1},{T_2}\) là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng \({T_1}{T_2}.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa xét đường tròn (C) có tâm I(1;3) và bán kính R = 2.
Theo tính chất tiếp tuyến ta có \(MI \bot {T_1}{T_2}\) tại trung điểm \({T_1}{T_2}\)
Suy ra đường thẳng \({T_1}{T_2}\) nhận vectơ \(\widehat {MI}\left( {4;2} \right)\) là VTPT
Giả sử \({T_1}\left( {{x_1};\,\,{y_1}} \right)\). Khi đó, phương trình \({T_1}{T_2}\) có dạng \(4(x-x_1)+2(y-y_1)=0\).
Suy ra \(d\left( {O;{T_1}{T_2}} \right) = \frac{{\left| { - 4{x_1} - 2{y_1}} \right|}}{{\sqrt {{4^2} + {2^2}} }} = \frac{{\left| {4{x_1} + 2{y_1}} \right|}}{{2\sqrt 5 }}\)
Ta có: \(\overrightarrow {M{T_1}} = \left( {{x_1} + 3;\,\,{y_1} - 1} \right)\).
Theo giả thiết ta có:
\(\begin{array}{l} \overrightarrow {M{T_1}} .\overrightarrow {I{T_1}} = \left( {{x_1} - 1} \right)\left( {{x_1} + 3} \right) + \left( {{y_1} - 3} \right)\left( {{y_1} - 1} \right) = 0\\ \Leftrightarrow {x_1}^2 + 2{x_1} - 3 + {y_1}^2 - 4{y_1} + 3 = 0\,\,\,(1) \end{array} \)
Đồng thời ta có:
\(\begin{array}{l} I{T_1} = R\\ \Leftrightarrow {\left( {{x_1} + 3} \right)^2} + {\left( {{y_1} - 1} \right)^2} = 4\\ \Leftrightarrow {x_1}^2 + 6{x_1} + 9 + {y_1}^2 - 2{y_1} + 1 = 4\,\,\,(2) \end{array}\)
Lấy (1) –(2) ta được
\(4{x_1} + 2{y_1} = - 6\)
Từ đây ta có: \(d\left( {O;\,\,{T_1}{T_2}} \right) = \frac{{\left| {4{x_1} + 2{y_1}} \right|}}{{2\sqrt 5 }} = \frac{{| - 6|}}{{2\sqrt 5 }} = \frac{3}{{\sqrt 5 }}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Vĩnh Phúc lần 2