Một lò xo nhẹ có độ cứng \(20 N/m,\) đặt trên mặt phẳng ngang rất dài, một đầu cố định vào bức tường thẳng đứng, đầu còn lại gắn vật nặng \(m_1= 80g.\) Vật \(m_2 = 200g,\) mang điện tích \(20\;\mu C\) được liên kết với \(m_1\) bằng một sợi dây cách điện không dãn dài \(20cm.\) Hệ thống được đặt trong điện trường đều nằm ngang, theo hướng xa điểm cố định của lò xo và có cường độ \(20000 V/m.\) Bỏ qua ma sát giữa \(m_1\) với mặt phẳng ngang, hệ số ma sát giữa \(m_2\) và mặt phẳng ngang là \(0,1.\) Lấy \({\pi ^2} = 10\) và \(g = 10m/s^2.\) Tại thời điểm \(t = 0\) đốt sợi dây nối hai vật thì \(m_1\) dao động điều hòa, đến thời điểm \(t = 1,25s\) thì khoảng cách giữa hai vật gần giá trị nào nhất sau đây?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiKhi đốt sợi dây thì vật \(m_1\) dao động điều hòa với biên độ \(A,\) chu kì \(T_1\) còn vật \(m_2\) chuyển động nhanh dần đều với gia tốc \(a_2.\)
Công thức tính độ lớn lực điện: \({F_d} = \left| q \right|E\)
Ta có: \(\left\{ \begin{array}{l}A = \dfrac{{{F_d}}}{k} = \dfrac{{\left| q \right|E}}{k}\\{T_1} = 2\pi \sqrt {\dfrac{{{m_1}}}{k}} \\{a_2} = \dfrac{{{F_d} - {F_{mst}}}}{{{m_2}}} = \dfrac{{\left| q \right|E - \mu {m_2}g}}{{{m_2}}}\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}A = \dfrac{{{{20.10}^{ - 6}}.20000}}{{20}} = 0,02m\\{T_1} = 2\pi .\sqrt {\dfrac{{0,08}}{{20}}} = 0,4s\\{a_2} = \dfrac{{{{20.10}^{ - 6}}.20000 - 0,1.0,2.10}}{{0,2}} = 1m/{s^2}\end{array} \right.\)
Tại thời điểm \(t = 1,25s = 3T + \dfrac{T}{8}\)
+ Vật \(m_1\) có li độ: \({x_1} = \dfrac{A}{{\sqrt 2 }}\)
+ Vật \(m_2\) đi được quãng đường:
\({s_2} = \dfrac{1}{2}{a_2}{t^2} = \dfrac{1}{2}.1.1,{25^2} = 0,78125m\)
Khoảng cách giữa hai vật là:
\(d = A - \dfrac{A}{{\sqrt 2 }} + l + {s_2}\)
\( \Rightarrow d = 0,02 - \dfrac{{0,02}}{{\sqrt 2 }} + 0,2 + 0,78125 = 0,987m = 98,7cm\)
Chọn A.