Một con lắc lò xo treo thẳng đứng, dao động điều hòa nơi có gia tốc trọng trường g = 10 m/s2. Hình bên là đồ thị sự phụ thuộc của độ lớn lực đàn hồi Fdh của lò xo và độ lớn lực hồi phục Fhp tác dụng lên vật nặng của con lắc theo thời gian t. Biết \({{t}_{2}}-{{t}_{1}}=\frac{\pi }{12}(s).\) Tốc độ trung bình của vật nặng từ thời điểm t1 đến thời điểm t3 là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có đồ thị:
Giả sử ở vị trí cân bằng, lò xo giãn một đoạn ∆l0
Lực đàn hồi và lực phục hồi có độ lớn cực đại là:
\(\left\{ \begin{array}{*{35}{l}} {{F}_{dh\max }}=k\left( \Delta {{l}_{0}}+A \right) \\ {{F}_{ph\max }}=kA \\ \end{array}\Rightarrow {{F}_{dh\max }}>{{F}_{ph\max }} \right.\)
Từ đồ thị ta thấy đồ thị (1) là đồ thị lực phục hồi, đồ thị (2) là đồ thị lực đàn hồi
Ta có: \(\frac{{{F}_{dh\max }}}{{{F}_{ph\max }}}=\frac{k\left( \Delta {{l}_{0}}+A \right)}{kA}=\frac{3}{2}\Rightarrow 2\left( \Delta {{l}_{0}}+A \right)=3A\Rightarrow A=2\Delta {{l}_{0}}\)
Nhận xét: lực phục hồi có độ lớn nhỏ nhất tại vị trí cân bằng → tại thời điểm t1, vật ở vị trí cân bằng
Lực đàn hồi có độ lớn nhỏ nhất tại vị trí lò xo không biến dạng → tại thời điểm t2, vật ở vị trí lò xo không biến dạng lần thứ 2 kể từ thời điểm t1
Lực đàn hồi và lực phục hồi có độ lớn cực đại tại vị trí biên dưới → tại thời điểm t3, vật ở vị trí biên dưới lần đầu tiên kể từ thời điểm t2
Ta có vòng tròn lượng giác:
Từ vòng tròn lượng giác ta thấy từ thời điểm t1 đến t2, vecto quay được góc: \(\Delta \varphi =\frac{5\pi }{6}(rad)\)
Ta có: \(\Delta \varphi =\omega \left( {{t}_{2}}-{{t}_{1}} \right)\Rightarrow \frac{5\pi }{6}=\omega .\frac{\pi }{12}\Rightarrow \omega =10(ra\text{d/s)}\)
Mà \(\omega =\sqrt{\frac{g}{\Delta {{l}_{0}}}}\Rightarrow 10=\sqrt{\frac{10}{\Delta {{l}_{0}}}}\Rightarrow \Delta {{l}_{0}}=0,1(m)\)
\(\Rightarrow A=2\Delta {{l}_{0}}=0,2(m)\)
Nhận xét: từ thời điểm t1 đến t3, vật đi được quãng đường là:
S = 3A = 3.0,2 = 0,6 (m)
Vecto quay được góc:
\(\Delta \varphi =\frac{3\pi }{2}=\omega .\left( {{t}_{3}}-{{t}_{1}} \right)\Rightarrow {{t}_{3}}-{{t}_{1}}=\frac{\frac{3\pi }{2}}{10}=\frac{3\pi }{20}(s)\)
Tốc độ trung bình của vật trong khoảng thời gian từ t1 đến t3 là:
\({{v}_{tb}}=\frac{S}{{{t}_{3}}-{{t}_{1}}}=\frac{0,6}{\frac{3\pi }{20}}\approx 1,27(\text{m/s)}\)
Đề thi thử THPT QG năm 2021 môn Vật Lý
Trường THPT chuyên Hoàng Văn Thụ - Hòa Bình