Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\Delta SAB\) đều \( \Rightarrow SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\)
Gọi \(I = AC \cap HK\)
Do ABCD là hình vuông \( \Rightarrow AC \bot BD\)
Mà HK // BD (H là đường trung bình của tam giác ABD)
\( \Rightarrow AC \bot HK \Rightarrow AI \bot BD\)
Ta có: \(\left\{ \begin{array}{l}
AI \bot HK\\
AI \bot SH\,\,\left( {SH \bot ABCD} \right)
\end{array} \right. \Rightarrow AI \bot \left( {SHK} \right) \Rightarrow SI\) là hình chiếu của SA lên (SHK).
\( \Rightarrow \angle \left( {SA;\left( {SHK} \right)} \right) = \angle \left( {SA;SI} \right) = \angle ISA.\)
Gọi \(O = AC \cap BD\), áp dụng định lí Ta – lét ta có: \(\frac{{AI}}{{OA}} = \frac{{AH}}{{AB}} = \frac{1}{2} \Rightarrow AI = \frac{1}{2}OA = \frac{1}{4}AC = \frac{{a\sqrt 2 }}{4}\)
Tam giác SIA vuông tại \(I \Rightarrow \sin \angle ISA = \frac{{AI}}{{SA}} = \frac{{\frac{{a\sqrt 2 }}{4}}}{a} = \frac{{\sqrt 2 }}{4}\)
Vậy \(\sin \angle \left( {SA;\left( {SHK} \right)} \right) = \frac{{\sqrt 2 }}{4}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Lương Văn Tụy lần 2