JavaScript is required

Câu hỏi:

Quan sát một đàn ong trong 20 tuần, người ta ước lượng được số lượng ong trong đàn bởi công thức Pt=200001+1000et, trong đó là thời gian tính theo tuần kể từ khi bắt đầu quan sát, 0t20. Tại thời điểm nào thì số lượng ong của đàn tăng nhanh nhất (kết quả làm tròn đến hàng đơn vị của tuần).

Trả lời:

Đáp án đúng:


Số lượng ong tăng nhanh nhất khi tốc độ tăng đạt giá trị lớn nhất, tức là khi $P''(t) = 0$.
Ta có $P(t) = \frac{20000}{1 + 1000e^{-t}}$
$P'(t) = 20000 \cdot (-1) \cdot (1 + 1000e^{-t})^{-2} \cdot (-1000e^{-t}) = \frac{20000000e^{-t}}{(1 + 1000e^{-t})^2}$
$P''(t) = \frac{20000000(-e^{-t})(1 + 1000e^{-t})^2 - 20000000e^{-t} \cdot 2 (1 + 1000e^{-t})(-1000e^{-t})}{(1 + 1000e^{-t})^4}$
$P''(t) = \frac{20000000e^{-t}(-(1 + 1000e^{-t}) + 2000e^{-t})}{(1 + 1000e^{-t})^3}$
$P''(t) = \frac{20000000e^{-t}(-1 - 1000e^{-t} + 2000e^{-t})}{(1 + 1000e^{-t})^3} = \frac{20000000e^{-t}(1000e^{-t} - 1)}{(1 + 1000e^{-t})^3}$
$P''(t) = 0 \Leftrightarrow 1000e^{-t} - 1 = 0 \Leftrightarrow e^{-t} = \frac{1}{1000} \Leftrightarrow -t = ln(\frac{1}{1000}) \Leftrightarrow t = -ln(\frac{1}{1000}) = ln(1000) \approx 6.907$
Vậy $t \approx 7$ thì số lượng ong tăng nhanh nhất.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Đáp án đúng: D
Dựa vào hình dạng đồ thị, ta có thể suy ra:


  • Hàm số bậc ba $y = ax^3 + bx^2 + cx + d$.

  • $a < 0$ (vì nhánh cuối của đồ thị đi xuống).

  • Đồ thị có 2 điểm cực trị.


Xét các đáp án:

  • Đáp án A: $y = x^3 - 2024x$ có $a > 0$, loại.

  • Đáp án B: $y = -x^3 + 3x$ có $a < 0$, nhưng đối xứng qua gốc tọa độ nên loại.

  • Đáp án C: $y = x^3 - 3x^2 + 2024$ có $a > 0$, loại.

  • Đáp án D: $y = -x^3 + 3x^2 - 2$ có $a < 0$ và có 2 điểm cực trị, thỏa mãn.


Vậy đáp án đúng là D.
Lời giải:
Đáp án đúng: A
Ta có $y = \frac{x+1}{x^2+x-2} = \frac{x+1}{(x-1)(x+2)}$.

Điều kiện xác định: $x \neq 1$ và $x \neq -2$.

Ta có thể rút gọn biểu thức như sau: $y = \frac{x+1}{(x-1)(x+2)} = \frac{1}{x-1}$ khi $x \neq -1$.

Khi $x \to 1$, $y \to \infty$ nên $x=1$ là tiệm cận đứng.

Khi $x \to -2$, biểu thức không xác định nhưng vì tử khác 0 nên không có tiệm cận đứng tại $x=-2$.

Vậy đồ thị hàm số có 1 đường tiệm cận đứng là $x=1$.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 4:

Cho hàm số y=x2+ax+b có đồ thị là đường cong trong hình vẽ bên. Giá trị của T = a+ b bằng

Cho hàm số y= x^2 + a / x+ b có đồ thị là đường cong trong hình vẽ bên. Giá trị của T = a+ b bằng (ảnh 1)
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 5:

Cho hình lập phương ABCD.A'B'C'D'Hai vectơ nào có giá cùng nằm trong mặt phẳng (ABCD)

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 6:

Trong không gian Oxyz, cho biểu diễn của vectơ a qua các vectơ đơn vị là a=2i+k3j. Tọa độ của vectơ a

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 7:

Trong không gian với hệ toạ độ Oxyz, cho điểm M4;1;2 và vectơ u=4;2;6.Tìm toạ độ điểm N biết rằng MN=12u

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP