JavaScript is required

Câu hỏi:

Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

A. \(\left\{ {\begin{array}{*{20}{c}}{x + {y^2} > 4}\\{ - 3x - 5y \le - 6}\end{array}} \right.\).
B. \(\left\{ {\begin{array}{*{20}{l}}{ - 3x + y \le - 1}\\{\sqrt 5 x - 7y > 5}\end{array}} \right.\).
C. \(\left\{ {\begin{array}{*{20}{l}}{3x + y \ge 9}\\{\frac{2}{x} - 3y \le 1}\end{array}} \right.\).
D. \(\left\{ {\begin{array}{*{20}{c}}{{x^3} + y > 4}\\{ - x - y \le 100}\end{array}} \right.\).
Trả lời:

Đáp án đúng: B


Hệ bất phương trình bậc nhất hai ẩn là hệ gồm các bất phương trình bậc nhất hai ẩn x, y. Bất phương trình bậc nhất hai ẩn có dạng $ax + by \le c$, $ax + by \ge c$, $ax + by < c$, hoặc $ax + by > c$, trong đó a, b, c là các số thực và a, b không đồng thời bằng 0.
  • Đáp án A có $y^2$ nên loại.
  • Đáp án B có $-3x + y \le -1$ và $\sqrt{5}x - 7y > 5$ đều là bất phương trình bậc nhất hai ẩn.
  • Đáp án C có $\frac{2}{x}$ nên loại.
  • Đáp án D có $x^3$ nên loại.
Vậy đáp án đúng là B.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Đáp án đúng: B
Ta có: $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ và $\sin 45^{\circ} = \frac{\sqrt{2}}{2}$.
Do đó, $\cos 45^{\circ} + \sin 45^{\circ} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$.
Câu 6:
Cho tam giác ABC có \(AB = 5\,{\rm{cm}}\), \(AC = 8\,{\rm{cm}}\) và \(BC = 7\,{\rm{cm}}\). Số đo góc \[A\] bằng
Lời giải:
Đáp án đúng: A
Áp dụng định lý cosin trong tam giác ABC, ta có:
$BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos A$
Suy ra:
$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} = \frac{5^2 + 8^2 - 7^2}{2 \cdot 5 \cdot 8} = \frac{25 + 64 - 49}{80} = \frac{40}{80} = \frac{1}{2}$
Vậy $A = 60^\circ$.
Câu 7:

Cho tam giác \(ABC\), có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là các đỉnh \(A,{\rm{ }}B,{\rm{ }}C\)

Lời giải:
Đáp án đúng: a
Từ ba điểm $A$, $B$, $C$, ta có thể tạo ra các vectơ có điểm đầu và điểm cuối là các đỉnh của tam giác như sau:
- $\overrightarrow{AB}$
- $\overrightarrow{AC}$
- $\overrightarrow{BA}$
- $\overrightarrow{BC}$
- $\overrightarrow{CA}$
- $\overrightarrow{CB}$
Vậy có tất cả 6 vectơ khác vectơ không.
Câu 8:

Cho ba điểm \[M,N,P\] thẳng hàng, trong đó điểm \[N\] nằm giữa hai điểm \[M\]\[P\]. Khi đó cặp vectơ nào sau đây cùng hướng?

Lời giải:
Đáp án đúng: B
Vì $N$ nằm giữa $M$ và $P$ nên $\overrightarrow{MN}$ và $\overrightarrow{MP}$ cùng hướng.
Vậy đáp án là B.
Câu 9:

Cho hình bình hành \[ABCD\]. Vectơ tổng \[\overrightarrow {CB} + \overrightarrow {CD} \] bằng

Lời giải:
Đáp án đúng: a
Ta có hình bình hành $ABCD$.

$\overrightarrow{CB} + \overrightarrow{CD} = \overrightarrow{CA}$ (theo quy tắc hình bình hành).

Do đó, đáp án đúng là $\overrightarrow{CA}$
Câu 10:

Với giá trị thực nào của \[x\] mệnh đề chứa biến \[P\left( x \right):2x - 5 > 0\] là mệnh đề đúng?

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 11:

Cho hai tập hợp \(A = \left\{ {x \in \left. \mathbb{R} \right|x - 1 > 0} \right\}\)\(B = \left\{ {x \in \left. \mathbb{R} \right|x - 2022 \le 0} \right\}\). Khi đó: \(A \cup B\)

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 12:

Cho \(\tan \alpha - \cot \alpha = 3.\) Tính giá trị của biểu thức sau: \(A = {\tan ^2}\alpha + {\cot ^2}\alpha \)

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 13:

Cho bất phương trình bậc nhất hai ẩn: \(x + y - 2 \ge 0\).

a) Đường thẳng \(d:x + y - 2 = 0\) đi qua hai điểm \(A\left( {0;2} \right)\) và \(B\left( {2;0} \right)\).

b) Gốc toạ độ \(O\left( {0;0} \right)\) không thuộc miền nghiệm của bất phương trình \(x + y - 2 \ge 0\).

c) \(M\left( {1;4} \right)\) thuộc miền nghiệm của bất phương trình \(x + y - 2 \ge 0\).

d) Phần bị gạch trong hình bên dưới (bao gồm cả bờ \(d:x + y - 2 = 0\)) là miền nghiệm của bất phương trình \(x + y - 2 \ge 0\).

Cho bất phương trình bậc nhất hai ẩn: x + y - 2 nhỏ hơn bằng 0 (ảnh 1)
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 14:

Cho tam giác \(ABC\) có \(M,N\) lần lượt là trung điểm của \(AC,BC\); \(AB = a\).

a) \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).

b) \(\overrightarrow {NB} = \overrightarrow {CN} \).

c) \(\overrightarrow {CM} - \overrightarrow {CN} = \overrightarrow {MN} \).

d) \(\left| {\overrightarrow {CM} - \overrightarrow {NB} } \right| = \frac{a}{2}\).

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP