JavaScript is required

Câu hỏi:

Cho tam giác \(ABC\). Tính giá trị biểu thức \(P = \sin A \cdot \cos \left( {B + C} \right) + \cos A \cdot \sin \left( {B + C} \right)\).

Trả lời:

Đáp án đúng:


Ta có $A + B + C = \pi$ (tổng ba góc trong một tam giác)
Suy ra $B + C = \pi - A$.
Vậy $P = \sin A \cdot \cos (\pi - A) + \cos A \cdot \sin (\pi - A)$
$= \sin A \cdot ( - \cos A) + \cos A \cdot \sin A$
$= - \sin A \cos A + \sin A \cos A = 0$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Đáp án đúng: B
  • Mệnh đề A đúng theo bất đẳng thức tam giác.
  • Mệnh đề B sai vì 21 là số lẻ.
  • Mệnh đề C đúng vì $12 \div 3 = 4$.
  • Mệnh đề D đúng vì $\pi$ là số vô tỷ.

Vậy đáp án là B.
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 5:
Trong các hệ bất phương trình dưới đây, hệ bất phương trình nào là hệ bất phương trình bậc nhất hai ẩn?
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Câu 6:

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x > 0\\x + y \le 2\\x - y > 1\end{array} \right.\) chứa điểm nào sau đây?

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP