JavaScript is required

Câu hỏi:

Cho hai tập hợp P=[3m6;4)P = [3m - 6 ; 4)Q=(2;m+1)Q = ( -2 ; m + 1), mRm \in \mathbb{R}. Điều kiện của tham số mm để P\Q=P \backslash Q = \varnothing

A. 43<m3\dfrac43 < m \le 3.
B. m3m \ge 3 .
C. 3m<1033 \le m < \dfrac{10}3.
D. 3<m<1033 < m < \dfrac{10}3.
Trả lời:

Đáp án đúng: D


Để $P \backslash Q = \varnothing$ thì $P \subseteq Q$. Điều này xảy ra khi và chỉ khi: $3m - 6 > -2$ và $m + 1 \ge 4$ Giải hệ bất phương trình: $3m - 6 > -2 \Leftrightarrow 3m > 4 \Leftrightarrow m > \dfrac{4}{3}$ $m + 1 \ge 4 \Leftrightarrow m \ge 3$ Kết hợp hai điều kiện, ta có $m \ge 3$. Nếu $3m - 6 < 4$ thì $3m < 10$, $m < \dfrac{10}{3}$. Vậy $3 \le m < \dfrac{10}{3}$

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan