Cho A và B là hai biến cố. \(P(A) = 0,7, P(B|A) = 0,9.\) Tính \(P(AB).\)
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Kết Nối Tri Thức Với Cuộc Sống – Bộ Đề 01 được xây dựng theo định hướng phát triển năng lực, phù hợp với học sinh đang ôn tập học kỳ II và chuẩn bị cho kỳ thi THPT. Cấu trúc đề gồm 3 phần chính: Phần A. Trắc Nghiệm, với Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Nội dung kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Đây là tài liệu bám sát chương trình, hỗ trợ hiệu quả trong việc hệ thống hóa kiến thức và luyện đề kiểm tra chất lượng.
Câu hỏi liên quan
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: “Viên bi lấy ra lần thứ nhất là bi đen”;
Và B: “Viên bi lấy ra lần thứ hai là bi trắng”.
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B.
Khảo sát thị lực của \(100\) học sinh ta thu được bảng số liệu sau:
Chọn ngẫu nhiên một bạn trong số \(100\) bạn học sinh nói trên. Gọi \(A\) là biến cố “Học sinh được chọn có tật khúc xạ” và \(B\) là biến cố “Học sinh được chọn là nữ”. Giá trị biểu thức \(P\left( B \right).P\left( A|B \right)+P\left( \overline{B} \right).P\left( A|\overline{B} \right)\) bằng:
Một căn bệnh \(X\) có \(4\text{ }\!\!%\!\!\text{ }\) dân số mắc phải. Một phương pháp chẩn đoán bệnh \(X\) có tỉ lệ chính xác là \(99\text{ }\!\!%\!\!\text{ }\). Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính \(99\text{ }\!\!%\!\!\text{ }\) số trường hợp. Với những người không mắc bệnh, phương pháp này cũng chẩn đoán đúng \(98\text{ }\!\!%\!\!\text{ }\). Chọn ngẫu nhiên một người đi kiểm tra bệnh \(X\) bằng phương pháp trên.
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).
Một hộp chưa 9 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 9. Bạn An lấy ra ngẫu nhiên 1 thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số 10, 11; ngược lại, An cho thêm vào hộp thẻ số 12, 13, 14. Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời 3 thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra ngoài. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho 2. (làm tròn kết quả đến hàng phần trăm).
Cho A và B là hai biến cố bất kì, với \(P\left( B \right)>0\). Khi đó:
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Một nhà đầu tư phân loại các dự án trong một chu kỳ đầu tư thành 3 loại: ít rủi ro, rủi ro trung bình và rủi ro cao. Tỷ lệ các dự án các loại đó tương ứng là \(20%;\text{ }45%\text{ }v\grave{a}\text{ }35%\). Kinh nghiệm cho thấy tỷ lệ các dự án gặp rủi ro khi đầu tư tương ứng là \(5%;\text{ }20%\text{ }v\grave{a}\text{ }40%.\) Nếu một dự án gặp rủi ro sau kỳ đầu tư thì khả năng dự án rủi ro lớn nhất là bao nhiêu?
Có một kho chứa bia kém chất lượng chứa các thùng giống nhau (24 lon/thùng) gồm 2 loại: loại I để lẫn mỗi thùng 5 lon quá hạn sử dụng, loại II để lẫn mỗi thùng 3 lon quá hạn. Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II. Chọn ngẫu nhiên 1 thùng từ trong kho, từ thùng đó chọn ngẫu nhiên 10 lon thì thấy trong 10 lon đó có hai lon quá hạn sử dụng. Tính xác suất 10 lon được lấy là bia loại I (làm tròn kết quả đến hàng phần trăm).
Khảo sát thị trường có \(22,5\text{ }\!\!%\!\!\text{ }\) khách hàng sử dụng sản phẩm \(X,50\text{ }\!\!%\!\!\text{ }\) dùng sản phẩm \(Y\), \(36,5\text{ }\!\!%\!\!\text{ }\) trong số người dùng sản phẩm \(Y\) có dùng sản phẩm \(X\). Tìm xác suất một người dùng sản phẩm Y , biết rằng người đó không dùng sản phẩm \(X\).
Một khu dân cư có \(60\text{ }\!\!%\!\!\text{ }\) các hộ gia đình có không quá 4 thành viên. Trong các gia đình có không quá 4 thành viên, có \(20\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống; trong các gia đình có trên 4 thành viên, có \(70\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống. Chọn ngẫu nhiên 1 hộ gia đình trong khu dân cư. Biết rằng gia đình đó có ba thế hệ cùng chung sống, tính xác suất để gia đình đó có trên 4 thành viên.
Một thư viện có hai phòng riêng biệt, phòng A và phòng B.Xác suất chọn được một quyển sách về chủ đề Khoa học tự nhiên thuộc phòng A và thuộc phòng B lần lượclà 0,25 và 0,5. Chọn ngẫu nhiên 1 quyển sách của thư viện ; tính xác suất để chọn được 1 cuốn sách phòng A và thuộc chủ đề Khoa học tự nhiên là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Một hộp chứa 10 viên bi xanh và 5 viên bi đỏ. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp, xem màu, rồi bỏ ra ngoài. Nếu viên bi An lấy ra có màu xanh, bạn Bình sẽ lấy ra ngẫu nhiên 2 viên bi từ hộp; còn nếu viên bi An lấy ra có màu đỏ, bạn Bình sẽ lấy ra ngẫu nhiên 3 viên bi từ hộp. Tính xác suất để An lấy được viên bi màu xanh, biết rằng tất cả các viên bi được hai bạn chọn ra đều có đủ cả hai màu. (kết quả làm tròn đến hàng phần trăm).
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \(\frac{a}{b}\). Khi đó giá trị của biểu thức \(T=\frac{1}{2}a+b\) bằng bao nhiêu ?
Cho hai biến cố \(A,B\) có xác suất \(P \left( A \right)=0,4;\,P \left( B \right)=0,6;\,\,P \left( AB \right)=0,2\). Tính xác suất \(P \left( A|B \right)\).
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên một học sinh. Xét các biến cố sau:
\(A:\) "Học sinh được chọn tham gia câu lạc bộ cầu lông";
\(B:\) "Học sinh được chọn tham gia câu lạc bộ đá bóng".
Mỗi hộp đụng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, tính xác xuất để lấy ra hai bóng đèn màu xanh, biết cả hai bóng đều bị hỏng (kết quả làm tròn đến hàng phần trăm).
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai (Làm tròn đến chữ số hàng phần trăm).
Trong cơ quan có \(100\) người. Trong đó có \(60\) người gần cơ quan (trong đó có \(40\) người là nam), có tổng cộng \(30\) nữ nhân viên. Theo quy định của cơ quan thì người nào hoặc là nam hoặc gần cơ quan sẽ phải tham gia trực. Tính xác suất để chọn ngẫu nhiên một người trong danh sách mà người đó lại là nữ trực cơ quan? (Kết quả làm tròn đến hàng phần trăm)