Anh Bình làm ở công ty A năm đầu tiên với mức lương khởi điểm là 5.000.000 đồng/tháng. Từ năm thứ hai trở đi, mỗi năm lương của anh Bình tăng thêm \(15\%\) so với lương của năm trước đó. Hỏi tổng số tiền lương anh Bình nhận được trong 5 năm làm việc là bao nhiêu?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Số tiền lương của mỗi năm lập thành cấp số nhân với số hạng đầu
\({{u}_{1}}=60\,000\,000\), công bội \(q=115\%=1,15\).
Tổng số tiền lương nhận được trong 5 năm là việc là
\({{S}_{5}}=\frac{60\,000\,000\cdot \left[ 1-{{1,15}^{5}} \right]}{1-1,15}=404\,542\,875\) đồng.
Bộ đề kiểm tra học kì I môn Toán (năm học 2023 - 2024) của Cụm Trường TP. HCM bao gồm: 1. Trường THPT Nguyễn Công Trứ – Q. Gò Vấp – TP. HCM 2. Trường THPT Nguyễn Du – Q. 10 – TP. HCM 3. Trường THPT Trần Phú – Q. Tân Phú – TP. HCM
Câu hỏi liên quan
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \({{u}_{1}}=1,{{u}_{n+1}}=\frac{1}{3}\left( 2{{u}_{n}}+\frac{n-1}{{{n}^{2}}+3n+2} \right);n\in {{\mathbb{N}}^{\text{*}}}\).
Khi đó \({{u}_{2023}}\) bằng? (Làm tròn kết quả đến chữ số thập phân thứ tư).
Tìm số nguyên \(m\) nhỏ nhất để dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\frac{mn+1}{n+1}\) là dãy số tăng.
Biết rằng dãy số \(\left\{ \begin{array}{*{35}{l}} {{u}_{1}}=\sqrt{2} \\ {{u}_{n+1}}=\sqrt{{{u}_{n}}+2} \\\end{array} \right.\) bị chặn trên bởi \(a\). Tìm \(a\).
Một sinh viên giỏi \(X\) được một công ty trao quỹ học bổng \(60\) triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất \(0,5%\) mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền \(4\) triệu đồng.
Tổng \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{{{2}^{n}}}+\ldots \) bằng
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn Thần đèn cho chàng ba điều ước Aladin ước \(2\) điều đầu tiên tùy thích, nhưng điều ước thứ \(3\) của chàng là: "Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay". Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau.
Mùa hè năm 2024, để chuẩn bị cho "học kì quân đội" dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong \(45\) ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ \(11\), do số lượng thành viên tham gia tăng lên, nên lượng thực phẩm tiêu thụ tăng lên \(10\%\) mỗi ngày (ngày sau tăng \(10\%\) so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày?
Một anh kỹ sư bắt đầu đi làm cho một công ty được nhận tiền lương ở tháng đầu tiên là 8.000.000 đồng. Trong 3 năm đầu, kể từ tháng thứ 2 trở đi, mỗi tháng lương của anh kỹ sư được tăng 100.000 đồng so với tháng liền kề trước đó. Kể từ năm thứ 4 làm việc, thì mỗi tháng lương của kỹ sư sẽ tăng 300.000 đồng so với tháng liền kề trước đó. Hỏi tổng số tiền mà anh kỹ sư nhận được sau 5 năm làm việc là bao nhiêu?
Một người gửi tiết kiệm \(700\) triệu đồng vào một ngân hàng với lãi suất \(0,5%\)/tháng theo hình thức lãi kép. Kể từ lúc gửi cứ sau \(1\) tháng anh ta lại rút ra \(10\) triệu để chi tiêu (tháng cuối cùng nếu tài khoản không đủ \(10\) triệu thì rút hết). Hỏi sau thời gian bao nhiêu tháng kể từ ngày gửi tiền, tài khoản tiền gửi của người đó về \(0\) đồng? (Giả sử lãi suất không thay đổi trong suốt quá trình người đó gửi tiết kiệm).
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \({{u}_{n}}=\frac{n+1}{2n-1}\) với \(n\in{{\mathbb{N}}^{\text{*}}}\).
Tìm số hạng \({{u}_{3}}\).
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:
+ Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)).
+ Bước 2: Làm tương tự như Bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{2}}}\)).
Cứ tiếp tục quá trình như vậy (ở bước thứ \(n\), bỏ đi \({{3}^{n-1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{n}}}\)).
Tổng diện tích các tam giác đã bỏ đi bằng bao nhiêu?
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành \(200\) đô la, và trong mỗi tuần tiếp theo, cô đã thêm \(16\) đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá \(1\,000\) đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Cho dãy số \(\left( {{u}_{n}} \right)\), với \({{u}_{n}}=3n-10.\) Khi đó, \({{u}_{15}}\) bằng:
Tính tổng \(M=2+4+6+...+(2n+4)\)
Trong các dãy số cho bởi công thức của số hạng tổng quát dưới đây, dãy số nào là dãy số giảm?
Trong các dãy số sau, dãy số nào là dãy số vô hạn?
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
Trong các dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát \({{u}_{n}}\) sau đây, đâu là dãy số giảm?
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.