Một anh kỹ sư bắt đầu đi làm cho một công ty được nhận tiền lương ở tháng đầu tiên là 8.000.000 đồng. Trong 3 năm đầu, kể từ tháng thứ 2 trở đi, mỗi tháng lương của anh kỹ sư được tăng 100.000 đồng so với tháng liền kề trước đó. Kể từ năm thứ 4 làm việc, thì mỗi tháng lương của kỹ sư sẽ tăng 300.000 đồng so với tháng liền kề trước đó. Hỏi tổng số tiền mà anh kỹ sư nhận được sau 5 năm làm việc là bao nhiêu?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lương hằng tháng của anh kỹ sư nhận được trong 3 năm đầu làm việc lập thành cấp số cộng \(\left( {{u}_{n}} \right)\) có số hạng đầu \({{u}_{1}}=8.000.000\) và công sai \({{d}_{1}}=100.000\). Suy rasố tiền mà anh kỹ sư nhận được sau 3 năm làm việc là:
\(\begin{array}{*{35}{l}} {{S}_{36}} & =\frac{36}{2}\left( 2{{u}_{1}}+35{{d}_{1}}\right)=18\left( 2\times 8.000.000+35\times 100.000 \right) \\ {} & =351.000.000(dong). \\\end{array}\)
Lương hằng tháng của anh kỹ sư nhận được kể từ năm thứ 4 làm việc lập thành cấp số cộng \(\left( {{v}_{n}} \right)\) có số hạng đầu\({{v}_{1}}={{u}_{36}}+300.000={{u}_{1}}+35{{d}_{1}}+300.000=11.800.000\) và công sai \({{d}_{2}}=300.000\)
Số tiền mà anh kỹ sư nhận được trong năm thứ 4 và năm thứ 5 làm việc là:
\(\begin{array}{*{35}{l}} {{S}_{24}} & =\frac{24}{2}\left( 2{{v}_{1}}+23{{d}_{2}}\right)=12\left( 2\times 11.800.000+23\times 300.000 \right) \\ {} & =366.000.000(dong). \\\end{array}\).
Tổng số tiền anh kỹ sư nhận được sau 5 năm làm việc là:
\(\begin{array}{*{35}{l}} S & ={{S}_{36}}+{{S}_{24}}=351.000.000+366.000.000 \\ {} & =717.000.000(dong). \\\end{array}\)
Bộ đề kiểm tra học kì I môn Toán (năm học 2023 - 2024) của Cụm Trường Miền Trung bao gồm: 1. Trường THPT Quế Sơn – H. Quế Sơn – Quảng Nam 2. Trường THPT Lê Lợi – TP. Đông Hà – Quảng Trị 3. Trường THPT Phạm Phú Thứ – H. Hoà Vang – Đà Nẵng
Câu hỏi liên quan
Cho dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát: \({{u}_{n}}=\frac{2n}{n+1}\). Ba số hạng đầu của dãy số đã cho lần lượt là
Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:
+ Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)).
+ Bước 2: Làm tương tự như Bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{2}}}\)).
Cứ tiếp tục quá trình như vậy (ở bước thứ \(n\), bỏ đi \({{3}^{n-1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4}^{n}}}\)).
Tổng diện tích các tam giác đã bỏ đi bằng bao nhiêu?
Nhà toán học người Pháp Pierre de Fermat là người đầu tiên đưa ra khái niệm số Fermat \(F_n = 2^{2^n} +1\) với \(n\) là một số nguyên dương không âm, Fermat dự đoán \(F_n\) là một số nguyên tố nhưng Euler đã chứng minh được \(F_5\) là hợp số. Hãy tìm số chữ số của \(F_{13}\).
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
Biết rằng dãy số \(\left\{ \begin{array}{*{35}{l}} {{u}_{1}}=\sqrt{2} \\ {{u}_{n+1}}=\sqrt{{{u}_{n}}+2} \\\end{array} \right.\) bị chặn trên bởi \(a\). Tìm \(a\).
Mùa hè năm 2024, để chuẩn bị cho "học kì quân đội" dành cho các bạn nhỏ, một đơn vị bộ đội chuẩn bị thực phẩm cho các bạn nhỏ, dự kiến đủ dùng trong \(45\) ngày (năng suất ăn của mỗi ngày là như nhau). Nhưng bắt đầu từ ngày thứ \(11\), do số lượng thành viên tham gia tăng lên, nên lượng thực phẩm tiêu thụ tăng lên \(10\%\) mỗi ngày (ngày sau tăng \(10\%\) so với ngày trước đó). Hỏi thực tế lượng thức ăn đó đủ dùng cho bao nhiêu ngày?
Số hạng thứ ba của dãy số \(\left\{ \begin{align} & {{u}_{1}}=2\,022 \\ & {{u}_{n+1}}={{u}_{n}}-n \\ \end{align} \right.\) bằng
Cho dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\frac{2n}{3n+2},n\in {{\mathbb{N}}^{\text{*}}}\). Khẳng định nào sau đây đúng?
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra \(600\) nghìn đồng vào tài khoản tiết kiệm, được trả lãi \(0,5\%\) cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành \(200\) đô la, và trong mỗi tuần tiếp theo, cô đã thêm \(16\) đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá \(1\,000\) đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Cho dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}={{n}^{2}}+3\). Chọn khẳng định đúng trong các khẳng định sau:
Trong các dãy số cho bởi công thức của số hạng tổng quát dưới đây, dãy số nào là dãy số giảm?
Sinh nhật bạn của An vào ngày \(1\) tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo \(1\,000\) đồng vào ngày \(01\) tháng \(01\) năm \(2016\), sau đó cứ liên tục ngày sau hơn ngày trước \(1\,000\) đồng. Hỏi đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Một sinh viên giỏi \(X\) được một công ty trao quỹ học bổng \(60\) triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất \(0,5%\) mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền \(4\) triệu đồng.
Tìm số nguyên \(m\) nhỏ nhất để dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\frac{mn+1}{n+1}\) là dãy số tăng.
Cho dãy số \(\left( {{u}_{n}} \right)\) xác định bởi \({{u}_{n}}=\frac{n+1}{2n-1}\) với \(n\in{{\mathbb{N}}^{\text{*}}}\).
Tìm số hạng \({{u}_{3}}\).
Hùng đang tiết kiệm để mua một cây đàn piano có giá \(142\) triệu đồng. Trong tháng đầu tiên, anh ta để dành được \(20\) triệu đồng. Mỗi tháng tiếp theo anh ta để dành được \(3\) triệu đồng và đưa vào số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?
Cho dãy số \(\left( {{u}_{n}} \right)\), biết \(\left\{ \begin{array}{*{35}{l}} {{u}_{1}}=-1 \\ {{u}_{n+1}}={{u}_{n}}+3 \\ \end{array} \right.\) với \(n\ge 0\). Ba số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?
Trong các dãy số \(\left( {{u}_{n}} \right)\) có số hạng tổng quát \({{u}_{n}}\) sau đây, đâu là dãy số giảm?