Phương án 1:
Vì \(CC\text{ }\!\!'\!\!\text{ }\bot \left( A\text{ }\!\!'\!\!\text{ }B\text{ }\!\!'\!\!\text{ }C\text{ }\!\!'\!\!\text{ } \right)\) nên góc giữa đường thẳng \(CC\text{ }\!\!'\!\!\text{ }\) và mặt phẳng \(\left( A\text{ }\!\!'\!\!\text{ }B\text{ }\!\!'\!\!\text{ }C\text{ }\!\!'\!\!\text{ } \right)\) bằng \({{90}^{\circ }}\).
Phương án 2:
Ta có: \(\left\{ \begin{array}{*{35}{l}} \left( ACCA \right)\cap \left( ABBA \right) \\ AB\bot AA \\ AC\bot AA \\\end{array} \right.\)
\(\Rightarrow \left[ B\text{ }\!\!'\!\!\text{ },AA\text{ }\!\!'\!\!\text{ },C\text{ }\!\!'\!\!\text{ } \right]=\widehat{B\text{ }\!\!'\!\!\text{ }A\text{ }\!\!'\!\!\text{ }C\text{ }\!\!'\!\!\text{ }}={{60}^{\circ }}\).
Phương án 3:

Gọi \(H\) là trung điểm của \(AB\Rightarrow CH\bot AB\) (1).
Mặt khác \(CC\text{ }\!\!'\!\!\text{ }\bot CH\) (2)
Từ (1) và (2) suy ra \(d\left( AB;\,CC\text{ }\!\!'\!\!\text{ } \right)=CH=\frac{a\sqrt{3}}{2}\).
Phương án 4:

Gọi \(M\) là trung điểm \(A\text{ }\!\!'\!\!\text{ }C\text{ }\!\!'\!\!\text{ }\), \(E=AB\text{ }\!\!'\!\!\text{ }\cap A\text{ }\!\!'\!\!\text{ }B\Rightarrow E\) là trung điểm của \(A\text{ }\!\!'\!\!\text{ }B\).
Khi đó \(BC\text{ }\!\!'\!\!\text{ }//ME\Rightarrow BC\text{ }\!\!'\!\!\text{ }//\left( AB\text{ }\!\!'\!\!\text{ }M \right)\).
\(\Rightarrow d\left( BC\text{ }\!\!'\!\!\text{ },AB\text{ }\!\!'\!\!\text{ } \right)=d\left( BC\text{ }\!\!'\!\!\text{ },\left( AB\text{ }\!\!'\!\!\text{ }M \right) \right)=d\left( C\text{ }\!\!'\!\!\text{ },\left( AB\text{ }\!\!'\!\!\text{ }M \right) \right)=d\left( A\text{ }\!\!'\!\!\text{ },\left( AB\text{ }\!\!'\!\!\text{ }M \right) \right)\) (*).
Trong mặt phẳng \(\left( A\text{ }\!\!'\!\!\text{ }AM \right)\) kẻ \(A\text{ }\!\!'\!\!\text{ }H\bot AM\) (1).
Do \(\Delta ABC\) đều \(\Rightarrow B\text{ }\!\!'\!\!\text{ }M\bot A\text{ }\!\!'\!\!\text{ }C\text{ }\!\!'\!\!\text{ }\).
\(ABC.A\text{ }\!\!'\!\!\text{ }B\text{ }\!\!'\!\!\text{ }C\text{ }\!\!'\!\!\text{ }\) là hình lăng trụ đứng \(\Rightarrow AA\text{ }\!\!'\!\!\text{ }\bot \left( ABC \right)\Rightarrow AA\text{ }\!\!'\!\!\text{ }\bot B\text{ }\!\!'\!\!\text{ }M\text{ }\!\!'\!\!\text{ }\).
Nên \(B\text{ }\!\!'\!\!\text{ }M\bot \left( A\text{ }\!\!'\!\!\text{ }AM \right)\Rightarrow B\text{ }\!\!'\!\!\text{ }M\bot A\text{ }\!\!'\!\!\text{ }H\)(2).
Từ (1) và (2) \(\Rightarrow A\text{ }\!\!'\!\!\text{ }H\bot \left( AB\text{ }\!\!'\!\!\text{ }M \right)\Rightarrow d\left( A\text{ }\!\!'\!\!\text{ },\left( AB\text{ }\!\!'\!\!\text{ }M \right) \right)=A\text{ }\!\!'\!\!\text{ }H\) (**).
Trong tam giác \(A\text{ }\!\!'\!\!\text{ }AM\) vuông tại \(A\text{ }\!\!'\!\!\text{ }\), \(A\text{ }\!\!'\!\!\text{ }H\) là đường cao:
\(\frac{1}{A\text{ }\!\!'\!\!\text{ }{{H}^{2}}}=\frac{1}{A\text{ }\!\!'\!\!\text{ }{{A}^{2}}}+\frac{1}{A\text{ }\!\!'\!\!\text{ }{{M}^{2}}}\)\(=\frac{1}{{{a}^{2}}}+\frac{1}{{{a}^{2}}}=\frac{2}{{{a}^{2}}}\).
\(\Rightarrow A\text{ }\!\!'\!\!\text{ }H=\frac{a\sqrt{2}}{2}\) (***)
Từ (*), (**), (***) \(\Rightarrow d\left( AB\text{ }\!\!'\!\!\text{ },BC\text{ }\!\!'\!\!\text{ } \right)=\frac{a\sqrt{2}}{2}\).