Cho sơ đồ PERT của một dự án
Biết thời gian dự tính ngắn nhất của từng công việc (tn): A=3; B=2; C=2; D=6; E=2; F=4 tuần lễ và chi phí để rút ngắn thời gian xuống 1 tuần lễ của từng công việc là: B=50; C=50; D=30; E=100 triệu đồng. Thời gian rút ngắn của công việc D là:
Trả lời:
Đáp án đúng: B
Để tìm thời gian rút ngắn của công việc D, ta cần xác định đường găng (critical path) của dự án và xem xét các công việc trên đường găng đó.
Từ sơ đồ PERT, ta thấy có các đường đi sau:
1. A -> B -> D -> F: 3 + 2 + 6 + 4 = 15 tuần
2. A -> C -> E -> F: 3 + 2 + 2 + 4 = 11 tuần
Đường găng là đường đi dài nhất, trong trường hợp này là A -> B -> D -> F với thời gian 15 tuần.
Câu hỏi yêu cầu rút ngắn thời gian của dự án. Để rút ngắn thời gian dự án, ta cần rút ngắn thời gian của một hoặc nhiều công việc nằm trên đường găng. Công việc D nằm trên đường găng.
Tuy nhiên, câu hỏi không đưa ra thông tin về thời gian mục tiêu hoặc chi phí tối đa cho việc rút ngắn dự án. Câu hỏi chỉ hỏi về 'Thời gian rút ngắn của công việc D là:'. Vì không có thêm dữ liệu nên không thể tính toán được thời gian rút ngắn tối ưu của công việc D. Nếu rút ngắn D xuống 0, chi phí sẽ rất cao.
Do đó, dựa trên thông tin hiện có, không thể xác định chính xác thời gian rút ngắn của công việc D. Tuy nhiên, câu hỏi có thể đang kiểm tra sự hiểu biết về việc liệu có thể rút ngắn công việc D hay không. Vì D nằm trên đường găng, nên việc rút ngắn D sẽ rút ngắn thời gian dự án. Trong 4 đáp án chỉ có đáp án A = 0 tuần là không rút ngắn.
Vậy, đáp án có thể hợp lý nhất là **A. 0 tuần**, vì nó ngụ ý rằng không cần thiết phải rút ngắn công việc D dựa trên thông tin hiện có.