Trả lời:
Đáp án đúng: C
Xét tam thức bậc hai $f(x) = 2x^2 + 2x + 5$.
Ta có: $a = 2 > 0$ và $\Delta = b^2 - 4ac = 2^2 - 4 \cdot 2 \cdot 5 = 4 - 40 = -36 < 0$.
Vì $a > 0$ và $\Delta < 0$ nên $f(x) > 0$ với mọi $x \in \mathbb{R}$.
Vậy, tam thức $f(x)$ luôn nhận giá trị dương với mọi $x \in \mathbb{R}$.
Ta có: $a = 2 > 0$ và $\Delta = b^2 - 4ac = 2^2 - 4 \cdot 2 \cdot 5 = 4 - 40 = -36 < 0$.
Vì $a > 0$ và $\Delta < 0$ nên $f(x) > 0$ với mọi $x \in \mathbb{R}$.
Vậy, tam thức $f(x)$ luôn nhận giá trị dương với mọi $x \in \mathbb{R}$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
18/09/2025
0 lượt thi
0 / 30
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
