JavaScript is required

Câu hỏi:

Tập nghiệm của bất phương trình 6x2+x10 

A.

A. 12;13

B.

B. 12;13

C.

C. ;1213;+

D.

D. ;1213;+

Trả lời:

Đáp án đúng: A


Ta có bất phương trình $6x^2 + x - 1 \le 0$. Ta tìm nghiệm của phương trình $6x^2 + x - 1 = 0$. $6x^2 + 3x - 2x - 1 = 0 \Leftrightarrow 3x(2x + 1) - (2x + 1) = 0 \Leftrightarrow (3x - 1)(2x + 1) = 0$. Vậy $x = \frac{1}{3}$ hoặc $x = -\frac{1}{2}$. Xét dấu tam thức bậc hai $f(x) = 6x^2 + x - 1$. Vì $a = 6 > 0$ nên $f(x) \le 0$ khi $x$ nằm giữa hai nghiệm, tức là $x \in \left[-\frac{1}{2}; \frac{1}{3}\right]$.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan