JavaScript is required

Câu hỏi:

Cho tam giác ABC có AB = 6, C=45°,A=80°. Độ dài cạnh BC là:

A.
A. BC ≈ 8,4;
B.
B. BC ≈ 4,3;
C.
C. BC ≈ 7,0;
D.
D. BC ≈ 5,2.
Trả lời:

Đáp án đúng: B


Ta có $\angle B = 180^{\circ} - \angle A - \angle C = 180^{\circ} - 80^{\circ} - 45^{\circ} = 55^{\circ}$.
Dùng định lý sin: $\frac{BC}{\sin A} = \frac{AB}{\sin C}$
$\Rightarrow BC = \frac{AB \cdot \sin A}{\sin C} = \frac{6 \cdot \sin 80^{\circ}}{\sin 45^{\circ}} \approx \frac{6 \cdot 0.9848}{0.7071} \approx 8.34$
Vậy $BC \approx 8.34$, gần nhất với đáp án A. Tuy nhiên, đáp án A lại ghi là BC \u2248 8,4. Xét lại bài toán.
$\frac{BC}{\sin A} = \frac{AC}{\sin B}$
$\frac{AC}{\sin B} = \frac{AB}{\sin C}$
$AC = \frac{AB \cdot \sin B}{\sin C} = \frac{6 \cdot \sin 55^{\circ}}{\sin 45^{\circ}} = \frac{6 \cdot 0.81915}{0.7071} \approx 6.958$
Ta thấy không có đáp án nào gần đúng với kết quả này. Kiểm tra lại đề bài.
Chú ý: Đề bài có lẽ đã sai sót ở đâu đó. Nếu không sai thì kết quả phải xấp xỉ 8.4.
Do đó, chọn đáp án A (gần đúng nhất, dù không hoàn toàn chính xác).
Tuy nhiên, nếu làm tròn số liệu và sử dụng máy tính cầm tay, kết quả sẽ chính xác hơn. Theo đề bài, đáp án gần đúng nhất là A. BC \u2248 8,4.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan