JavaScript is required

Câu hỏi:

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A1;2;3,B2;1;5,C2;4;2.

a) Tọa độ trung điểm của AB 32;32;4.

b) OA+OB+OC=5;7;10.

c) Góc giữa hai vectơ AB AC bằng 300.

d) Điểm Ia;b;c nằm trên mặt phẳng Oxz thỏa mãn 3IBIC đạt giá trị nhỏ nhất. Khi đó a2b+2c=15.

Trả lời:

Đáp án đúng:


a) Gọi M là trung điểm của AB, ta có: $M(\frac{1+2}{2}; \frac{2+1}{2}; \frac{3+5}{2}) = M(\frac{3}{2}; \frac{3}{2}; 4)$. Vậy a) đúng.
b) $\overrightarrow{OA} = (1;2;3)$, $\overrightarrow{OB} = (2;1;5)$, $\overrightarrow{OC} = (2;4;2)$
$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = (1+2+2; 2+1+4; 3+5+2) = (5;7;10)$. Vậy b) đúng.
c) $\overrightarrow{AB} = (1;-1;2)$, $\overrightarrow{AC} = (1;2;-1)$
$\overrightarrow{AB}.\overrightarrow{AC} = 1*1 + (-1)*2 + 2*(-1) = 1 - 2 - 2 = -3$
$|\overrightarrow{AB}| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{6}$
$|\overrightarrow{AC}| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6}$
$\cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|} = \frac{-3}{6} = -\frac{1}{2}$
Suy ra góc giữa hai vecto là $120^0$. Vậy c) sai.
d) I nằm trên (Oxz) nên $I(a;0;c)$.
$\|3\overrightarrow{IB} - \overrightarrow{IC}\|$ nhỏ nhất.
$\overrightarrow{IB} = (2-a; 1; 5-c)$, $\overrightarrow{IC} = (2-a; 4; 2-c)$
$3\overrightarrow{IB} - \overrightarrow{IC} = (3(2-a)-(2-a); 3-4; 3(5-c) - (2-c)) = (4-2a; -1; 13-2c)$
$\|3\overrightarrow{IB} - \overrightarrow{IC}\|^2 = (4-2a)^2 + 1 + (13-2c)^2$
Để biểu thức này nhỏ nhất thì $(4-2a)^2$ và $(13-2c)^2$ nhỏ nhất, tức là bằng 0.
Suy ra $4-2a = 0 => a=2$ và $13-2c = 0 => c = \frac{13}{2}$
Khi đó $a-2b+2c = 2 - 2*0 + 2*\frac{13}{2} = 2 + 13 = 15$. Vậy d) đúng.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan

Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP