Trả lời:
Đáp án đúng: C
Gọi $a$ là cạnh của tam giác đều. Bán kính đường tròn ngoại tiếp tam giác đều là $R = \frac{a\sqrt{3}}{3}$.
Ta có $R = 4$, suy ra $a = \frac{3R}{\sqrt{3}} = \frac{3 \cdot 4}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}$ cm.
Diện tích tam giác đều là $S = \frac{a^2\sqrt{3}}{4} = \frac{(4\sqrt{3})^2\sqrt{3}}{4} = \frac{16 \cdot 3 \cdot \sqrt{3}}{4} = 12\sqrt{3}$ cm$^2$.
Ta có $R = 4$, suy ra $a = \frac{3R}{\sqrt{3}} = \frac{3 \cdot 4}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}$ cm.
Diện tích tam giác đều là $S = \frac{a^2\sqrt{3}}{4} = \frac{(4\sqrt{3})^2\sqrt{3}}{4} = \frac{16 \cdot 3 \cdot \sqrt{3}}{4} = 12\sqrt{3}$ cm$^2$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
Lời giải:
Đáp án đúng: A
Ta có $\overrightarrow{AM} = \overrightarrow{AC} + \overrightarrow{CM}$ và $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$.
Vì M là trung điểm BC nên $\overrightarrow{CM} = -\frac{1}{2}\overrightarrow{BC}$.
$\overrightarrow{AM}.\overrightarrow{BC} = (\overrightarrow{AC} - \frac{1}{2}\overrightarrow{BC}).\overrightarrow{BC} = \overrightarrow{AC}.\overrightarrow{BC} - \frac{1}{2}|\overrightarrow{BC}|^2$
$= \overrightarrow{AC}.(\overrightarrow{BA} + \overrightarrow{AC}) - \frac{1}{2}a^2 = \overrightarrow{AC}.\overrightarrow{BA} + |\overrightarrow{AC}|^2 - \frac{1}{2}a^2$
$= b.c.cos(180 - A) + b^2 - \frac{1}{2}a^2 = -bc.cosA + b^2 - \frac{1}{2}a^2$
Theo định lý cosin: $a^2 = b^2 + c^2 - 2bc.cosA \Rightarrow bc.cosA = \frac{b^2 + c^2 - a^2}{2}$
Do đó $\overrightarrow{AM}.\overrightarrow{BC} = -\frac{b^2 + c^2 - a^2}{2} + b^2 - \frac{1}{2}a^2 = \frac{-b^2 - c^2 + a^2 + 2b^2 - a^2}{2} = \frac{b^2 - c^2}{2}$.
Vì M là trung điểm BC nên $\overrightarrow{CM} = -\frac{1}{2}\overrightarrow{BC}$.
$\overrightarrow{AM}.\overrightarrow{BC} = (\overrightarrow{AC} - \frac{1}{2}\overrightarrow{BC}).\overrightarrow{BC} = \overrightarrow{AC}.\overrightarrow{BC} - \frac{1}{2}|\overrightarrow{BC}|^2$
$= \overrightarrow{AC}.(\overrightarrow{BA} + \overrightarrow{AC}) - \frac{1}{2}a^2 = \overrightarrow{AC}.\overrightarrow{BA} + |\overrightarrow{AC}|^2 - \frac{1}{2}a^2$
$= b.c.cos(180 - A) + b^2 - \frac{1}{2}a^2 = -bc.cosA + b^2 - \frac{1}{2}a^2$
Theo định lý cosin: $a^2 = b^2 + c^2 - 2bc.cosA \Rightarrow bc.cosA = \frac{b^2 + c^2 - a^2}{2}$
Do đó $\overrightarrow{AM}.\overrightarrow{BC} = -\frac{b^2 + c^2 - a^2}{2} + b^2 - \frac{1}{2}a^2 = \frac{-b^2 - c^2 + a^2 + 2b^2 - a^2}{2} = \frac{b^2 - c^2}{2}$.
Lời giải:
Đáp án đúng: A
Áp dụng định lý cosin trong tam giác ABC, ta có:
$BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos(A)$
$7^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos(A)$
$49 = 25 + 64 - 80 * cos(A)$
$80 * cos(A) = 40$
$cos(A) = 40 / 80 = 1/2$
=> A = 60 độ
$BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos(A)$
$7^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos(A)$
$49 = 25 + 64 - 80 * cos(A)$
$80 * cos(A) = 40$
$cos(A) = 40 / 80 = 1/2$
=> A = 60 độ
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP
Lời giải:
Bạn cần đăng ký gói VIP để làm bài, xem đáp án và lời giải chi tiết không giới hạn. Nâng cấp VIP

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026
