Câu hỏi:
Một cửa hàng bán hai loại đồ uống có tên là “Giọt lệ thiên thần” và “Giọt lệ ác quỷ”. Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng, ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng. Hàng tháng, cửa hàng này phải chi trả \(6\,000\,000\) đồng tiền thuê nhân viên, \(8\,000\,000\) đồng tiền thuê mặt bằng, \(3\,000\,000\) đồng tiền nguyên liệu. (Ngoài ra cửa hàng không tốn thêm bất kỳ chi phí gì và thu nhập của cửa hàng chỉ đến từ việc bán hai loại đồ uống trên). Gọi \(x\) và \(y\) lần lượt là số ly “Giọt lệ thiên thần” và “Giọt lệ ác quỷ” mà cửa hàng bán được trong một tháng. Điều kiện của \(x\) và \(y\) để doanh thu của cửa hàng trong một tháng có lãi thoả mãn bất phương trình \(ax + by > 1700\) với \(a,\,b \in \mathbb{N}\). Tính giá trị biểu thức \(T = 2a + b\).
Trả lời:
Đáp án đúng:
Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng nên một ly “Giọt lệ thiên thần” có giá \(150\,000\)đồng.
Ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng nên một ly “Giọt lệ ác quỷ” có giá \(180\,000\) đồng.
Tổng số tiền phải chi trả của cửa hàng trong một tháng là \(17\,000\,000\) đồng.
Để cửa hàng có lãi thì thu nhập của cửa hàng phải lớn hơn \(17\,000\,000\) đồng nên ta có:
\(150\,000x + 180\,000y > 17\,000\,000 \Leftrightarrow 15x + 18y > 1\,700\).
Vậy \(a = 15\,;\,\,b = 18 \Rightarrow T = 2a + b = 2 \cdot 15 + 18 = 48\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026

.png)
.png)
.png)
.png)