JavaScript is required

Câu hỏi:

Lớp 10B1 có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B1 là:

A.

9

B.

10

C.

18

D.

28

Trả lời:

Đáp án đúng: A


Gọi $T, L, H$ lần lượt là tập hợp các học sinh giỏi Toán, Lý, Hóa.
Ta có: $|T| = 7$, $|L| = 5$, $|H| = 6$, $|T \cap L| = 3$, $|T \cap H| = 4$, $|L \cap H| = 2$, $|T \cap L \cap H| = 1$.
Số học sinh giỏi ít nhất một môn là $|T \cup L \cup H|$.
Theo nguyên lý bao hàm và loại trừ, ta có:
$|T \cup L \cup H| = |T| + |L| + |H| - |T \cap L| - |T \cap H| - |L \cap H| + |T \cap L \cap H|$
$|T \cup L \cup H| = 7 + 5 + 6 - 3 - 4 - 2 + 1 = 10$.
Vậy số học sinh giỏi ít nhất một môn là 10.

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan