Câu hỏi:
Cho hình bình hành ABCD. Gọi M, N lần lượt là hai điểm nằm trên hai cạnh AB và CD sao cho AB = 3AM, CD = 2CN. Biểu diễn vectơ \(\overrightarrow {AN} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Đáp án đúng: B
Mà $\overrightarrow{AD} = \overrightarrow{BC}$ và $\overrightarrow{DN} = -\overrightarrow{CN} = -\frac{1}{2}\overrightarrow{CD} = -\frac{1}{2}\overrightarrow{AB}$
Do đó, $\overrightarrow{AN} = \overrightarrow{BC} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AC} - \frac{3}{2}\overrightarrow{AB}$
Vì ABCD là hình bình hành nên $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ hay $\overrightarrow{AD} = \overrightarrow{AC} - \overrightarrow{AB}$
Mặt khác, $AM = \frac{1}{3}AB$ và $CN = \frac{1}{2}CD = \frac{1}{2}AB$
$\overrightarrow{AN} = \overrightarrow{AC} + \overrightarrow{CN} = \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài