Đáp án đúng: B
Mệnh đề B: “$\exists$ n $\in$ $\mathbb{Z}$: n = n$^2$” có nghĩa là tồn tại một số nguyên n sao cho n = n$^2$. Điều này đúng vì khi $n = 0$ hoặc $n = 1$ thì $n = n^2$. Vậy B đúng.
Vậy, A sai, B đúng.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan
- A: $-2 < p \Leftrightarrow p^2 < 4$ đúng.
- B: $p < 4 \Leftrightarrow p^2 < 16$ đúng.
- C: $\sqrt{23} < 5 \Leftrightarrow 2.\sqrt{23} < 2.5$ sai. Vì khi nhân cả hai vế của bất đẳng thức với một số dương, chiều của bất đẳng thức không đổi. Tuy nhiên, $2 \sqrt{23} < 2.5$ là sai, vì $\sqrt{23} < 5$ là đúng, nhân với 2 thì phải là $2\sqrt{23} < 10$.
- D: $\sqrt{23} < 5 \Leftrightarrow (-2).\sqrt{23} > -2.5$ đúng. Vì khi nhân cả hai vế của bất đẳng thức với một số âm, chiều của bất đẳng thức đổi chiều.
Vậy đáp án sai là C.