Câu hỏi:
Cho hai mệnh đề A: “∀ x ∈ : x2 – 1 ≠ 0” và B: “∃ n ∈ : n = n2”. Xét tính đúng, sai của hai mệnh đề A và B.
Trả lời:
Đáp án đúng: B
Mệnh đề A: “$\forall$ x $\in$ $\mathbb{R}$: x$^2$ – 1 $\neq$ 0” có nghĩa là với mọi số thực x, $x^2 - 1 \neq 0$. Tuy nhiên, điều này không đúng vì khi $x = 1$ thì $x^2 - 1 = 1^2 - 1 = 0$. Vậy A sai.
Mệnh đề B: “$\exists$ n $\in$ $\mathbb{Z}$: n = n$^2$” có nghĩa là tồn tại một số nguyên n sao cho n = n$^2$. Điều này đúng vì khi $n = 0$ hoặc $n = 1$ thì $n = n^2$. Vậy B đúng.
Vậy, A sai, B đúng.
Mệnh đề B: “$\exists$ n $\in$ $\mathbb{Z}$: n = n$^2$” có nghĩa là tồn tại một số nguyên n sao cho n = n$^2$. Điều này đúng vì khi $n = 0$ hoặc $n = 1$ thì $n = n^2$. Vậy B đúng.
Vậy, A sai, B đúng.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – I-Learn Smart World – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Tiếng Anh 12 – Global Success – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Kết Nối Tri Thức – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Hóa Học 12 – Chân Trời Sáng Tạo – Năm Học 2025-2026

Trọn Bộ Giáo Án Word & PowerPoint Công Nghệ 12 – Kết Nối Tri Thức – Năm Học 2025-2026
